python训练svm分类器_python的svm分类器

【实例简介】

基于python的SVM分类算法,可以直接使用,包含源代码,支持参数设定

【实例截图】

【核心代码】

tmsvm_for_win_1.2.0

├── data

│   ├── Testdata.txt

│   ├── Traindata_noseg.txt

│   └── Traindata.txt

├── dependence

│   ├── chars.dic

│   ├── liblinear.dll

│   ├── liblinear.py

│   ├── liblinear.pyc

│   ├── liblinear.so.32

│   ├── liblinear.so.64

│   ├── liblinearutil.py

│   ├── liblinearutil.pyc

│   ├── libsvm.dll

│   ├── libsvm.so.32

│   ├── libsvm.so.64

│   ├── mmseg.dll

│   ├── mmseg.so.32

│   ├── mmseg.so.64

│   ├── porter2.py

│   ├── porter2.pyc

│   ├── pymmseg.py

│   ├── pymmseg.pyc

│   ├── svm.py

│   ├── svm.pyc

│   ├── svmutil.py

│   ├── svmutil.pyc

│   └── words.dic

├── java

│   ├── liblinear-1.8.jar

│   ├── libsvm.jar

│   ├── SvmModel.java

│   ├── SvmNode.java

│   ├── SvmPredict.java

│   ├── SvmResult.java

│   ├── TmsModel.java

│   └── TmsPredict.java

├── lsa_src

│   ├── lsa.py

│   ├── lsa_tms_predict.py

│   ├── lsa_tms_train.py

│   └── lsa_train.py

├── mapreduce

│   ├── hadoop_run_aliws.sh

│   ├── hstream.py

│   ├── input

│   ├── params

│   ├── randomSample.py

│   ├── run_sampling.sh

│   ├── run_svm_train.sh

│   ├── svm_train.py

│   ├── tms_predict_config.py

│   ├── tms_predict.py

│   └── word_count.py

├── others_src

│   ├── back_up.py

│   ├── ban_check_config.py

│   ├── ban_check.py

│   ├── ctm_train_model_config.py

│   ├── dic_config.py

│   ├── dic.py

│   ├── im_detect.py

│   ├── im_lsa_train_wrapper.py

│   ├── measure.py

│   ├── nmf_example.py

│   ├── nmf.py

│   ├── opt.py

│   ├── post_check_lsa.py

│   ├── post_check.py

│   ├── post_train_lsa_wrapper.py

│   ├── post_train_wrapper.py

│   ├── two_dimen_test.py

│   └── weijin_train_wrapper.py

├── src

│   ├── auto_train.py

│   ├── corpus_process.py

│   ├── ctmutil.py

│   ├── ctmutil.pyc

│   ├── example.py

│   ├── feature_select.py

│   ├── feature_select.pyc

│   ├── fileutil.py

│   ├── fileutil.pyc

│   ├── grid_search_param.py

│   ├── grid_search_param.pyc

│   ├── measure.py

│   ├── measure.pyc

│   ├── predict_model.py

│   ├── predict_model.pyc

│   ├── predict.py

│   ├── segment.py

│   ├── segment.pyc

│   ├── stem.py

│   ├── stem.pyc

│   ├── test.py

│   ├── tms.py

│   ├── tms.pyc

│   ├── tms_svm.py

│   ├── tms_svm.pyc

│   ├── train_model.py

│   ├── train_model.pyc

│   ├── train.py

│   └── utility_tools.py

├── Tmsvm参考文档(v1.2.0).pdf

├── tmsvm简介(v1.2.0).pdf

├── tools

│   ├── fselect.py

│   ├── grid.py

│   ├── result_analysis.py

│   ├── result_analysis.pyc

│   └── subset.py

└── 快速使用.docx

8 directories, 104 files

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值