本节构建一个网络,将路透社新闻划分为46个互斥的主题,也就是46分类
案例2:新闻分类(多分类问题)
1. 加载数据集
from keras.datasets importreuters
(train_data, train_labels), (test_data, test_labels)= reuters.load_data(num_words=10000)
将数据限定在10000个最常见出现的单词,8982个训练样本和2264个测试样本
len(train_data)
8982
len(test_data)
2246
train_data[10]
2. 将索引解码为新闻文本
word_index =reuters.get_word_index()
reverse_word_index= dict([(value, key) for (key, value) inword_index.items()])#Note that our indices were offset by 3#because 0, 1 and 2 are reserved indices for "padding", "start of sequence", and "unknown".
decoded_newswire = ' '.join([reverse_word_index.get(i - 3, '?') for i in train_data[0]])
train_labels[10]
3. 编码数据
importnumpy as npdef vectorize_sequences(sequences, dimension=10000):
results=np.zeros((len(sequences), dimension))for i, sequence inenumerate(sequences):
results[i, sequence]= 1
returnresults#将训练数据向量化
x_train =vectorize_sequences(train_data)#将测试数据向量化
x_test = vectorize_sequences(test_data)
#将标签向量化,将标签转化为one-hot
def to_one_hot(labels, dimension=46):
results=np.zeros((len(labels), dimension))for i, label inenumerate(labels):
results[i, label]= 1
returnresults
one_hot_train_labels=to_one_hot(train_labels)
one_hot_test_labels=to_one_hot(test_labels)from keras.utils.np_utils importto_categorical
one_hot_train_labels=to_categorical(train_labels)
one_hot_test_labels= to_categorical(test_labels)
4. 模型定义
from keras importmodelsfrom keras importlayers
model=models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))
5. 编译模型
对于这个例子,最好的损失函数是categorical_crossentropy(分类交叉熵),它用于衡量两个概率分布之间的距离
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
6. 留出验证集
留出1000个样本作为验证集
x_val = x_train[:1000]
partial_x_train= x_train[1000:]
y_val= one_hot_train_labels[:1000]
partial_y_train= one_hot_train_labels[1000:]
7. 训练模型
history = model.fit(partial_x_train, partial_y_train, epochs=20, batch_size = 512, validation_data = (x_val, y_val))
8. 绘制训练损失和验证损失
importmatplotlib.pyplot as plt
loss= history.history['loss']
val_loss= history.history['val_loss']
epochs= range(1, len(loss) + 1)
plt.plot(epochs, loss,'bo', label = 'Training loss')
plt.plot(epochs, val_loss,'b', label = 'Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
9. 绘制训练精度和验证精度
plt.clf() #清除图像
acc = history.history['acc']
val_acc= history.history['val_acc']
plt.plot(epochs, acc,'bo', label='Training acc')
plt.plot(epochs, val_acc,'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
10. 从头开始重新训练一个模型
中间层有64个隐藏神经元
#从头开始训练一个新的模型
model =models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(partial_x_train, partial_y_train, epochs=9, batch_size = 512, validation_data =(x_val, y_val))
results= model.evaluate(x_test, one_hot_test_labels)
results
[0.981157986054119, 0.790739091745149]
这种方法可以得到79%的精度
importcopy
test_labels_copy=copy.copy(test_labels)
np.random.shuffle(test_labels_copy)
float(np.sum(np.array(test_labels)== np.array(test_labels_copy))) / len(test_labels)
0.19011576135351738 完全随机的精度约为19%
#在新数据上生成预测结果
predictions =model.predict(x_test)
predictions[0].shape
np.sum(predictions[0])
np.argmax(predictions[0])
11. 处理标签和损失的另一种方法
y_train =np.array(train_labels)
y_test=np.array(test_labels)
model.compile(optimizer='rmsprop', loss='sparse_categorical_crossentropy', metrics=['acc'])
12. 中间层维度足够大的重要性
最终输出是46维的,本代码中间层只有4个隐藏单元,中间层的维度远远小于46
model =models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(4, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(partial_x_train, partial_y_train, epochs=20, batch_size = 128, validation_data = (x_val, y_val))
Epoch 20/20
7982/7982 [==============================] - 2s 274us/step - loss: 0.4369 - acc: 0.8779 - val_loss: 1.7934 - val_acc: 0.7160
验证精度最大约为71%,比前面下降了8%。导致这一下降的主要原因在于,你试图将大量信息(这些信息足够回复46个类别的分割超平面)压缩到维度很小的中间空间
13. 实验
1. 中间层32个
model =models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(partial_x_train, partial_y_train, epochs=20, batch_size = 128, validation_data =(x_val, y_val))
results=model.evaluate(x_test, one_hot_test_labels)
results
Epoch 20/20
7982/7982 [==============================] - 2s 231us/step - loss: 0.1128 - acc: 0.9564 - val_loss: 1.1904 - val_acc: 0.7970
2246/2246 [==============================] - 0s 157us/step
Out[29]:
[1.4285533854925303, 0.7773820125196835]
精度大约在77%
1. 中间层128个
model =models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(partial_x_train, partial_y_train, epochs=9, batch_size = 128, validation_data =(x_val, y_val))
results=model.evaluate(x_test, one_hot_test_labels)
results
Epoch 9/9
7982/7982 [==============================] - 2s 237us/step - loss: 0.1593 - acc: 0.9536 - val_loss: 1.0186 - val_acc: 0.8060
2246/2246 [==============================] - 0s 159us/step
Out[31]:
[1.126946303426211, 0.790293855743544]
精度大约在79%
尝试了中间层128个,但是迭代20轮,准确率却只有77%,说明迭代次数过高,出现了过拟合。