Chapter 5 (Eigenvalues and Eigenvectors): Complex eigenvalues (复特征值)

本文为《Linear algebra and its applications》的读书笔记

Real and Imaginary Parts of Vectors

向量的实部和虚部

  • The complex conjugate (共轭) of a complex vector x \boldsymbol x x in C n \mathbb C^n Cn is the vector x \boldsymbol x x in C n \mathbb C^n Cn whose entries are the complex conjugates of the entries in x \boldsymbol x x. The real and imaginary parts of a complex vector x \boldsymbol x x are the vectors Re x \text{Re}\boldsymbol x Rex and Im x \text{Im}\boldsymbol x Imx in R n \mathbb R^n Rn formed from the real and imaginary parts of the entries of x \boldsymbol x x.

EXAMPLE 4

  • If
    在这里插入图片描述then
    在这里插入图片描述
  • If B B B is an m × n m \times n m×n matrix with possibly complex entries, then B ‾ \overline B B denotes the matrix whose entries are the complex conjugates of the entries in B B B. Properties of conjugates for complex numbers carry over to (适用于) complex matrix algebra:
    在这里插入图片描述

Complex eigenvalues

  • The matrix eigenvalue–eigenvector theory already developed for R n \mathbb R^n Rn applies equally well to C n \mathbb C^n Cn. So a complex scalar λ \lambda λ satisfies det ( A − λ I ) = 0 \text{det}(A -\lambda I)= 0 det(AλI)=0 if and only if there is a nonzero vector x \boldsymbol x x in C n \mathbb C^n Cn such that A x = λ x A\boldsymbol x =\lambda \boldsymbol x Ax=λx. We call λ \lambda λ a (complex) eigenvalue and x \boldsymbol x x a (complex) eigenvector corresponding to λ \lambda λ.
    • This section shows that these roots provide critical information about A A A. The key is to let A A A act on the space C n \mathbb C^n Cn of n n n-tuples of complex numbers.

Here and elsewhere, we use the term complex eigenvalue to refer to an eigenvalue λ = a + b i \lambda= a + bi λ=a+bi , with b ≠ 0 b \neq 0 b=0.


EXAMPLE 2

Let A = [ . 5 − . 6 . 75 1.1 ] A =\begin{bmatrix} .5 &-.6\\.75&1.1\end{bmatrix} A=[.5.75.61.1]. Find the eigenvalues of A A A, and find a basis for each eigenspace.

SOLUTION

  • The characteristic equation of A A A is
    在这里插入图片描述在这里插入图片描述
  • For the eigenvalue λ = . 8 − . 6 i \lambda =.8 - .6i λ=.8.6i , construct
    在这里插入图片描述Row reduction of the usual augmented matrix is quite unpleasant by hand because of the complex arithmetic. However, here is a nice observation that really simplifies matters: Since . 8 − . 6 i .8 - .6i .8.6i is an eigenvalue, the system在这里插入图片描述has a nontrivial solution. Therefore, both equations determine the same relationship between x 1 x_1 x1 and x 2 x_2 x2, and either equation can be used to express one variable in terms of the other. The second equation leads to
    在这里插入图片描述Choose x 2 = 5 x_2 = 5 x2=5 to eliminate the decimals, and obtain x 1 = − 2 − 4 i x_1 = -2 - 4i x1=24i . A basis for the eigenspace corresponding to λ = . 8 − . 6 i \lambda =.8 - .6i λ=.8.6i is
    在这里插入图片描述Analogous calculations for λ = . 8 + . 6 i \lambda=.8 +.6i λ=.8+.6i produce the eigenvector
    在这里插入图片描述
  • Surprisingly, the matrix A A A in determines a transformation x ↦ A x \boldsymbol x \mapsto A\boldsymbol x xAx that is essentially a rotation. (The secret to the rotation is hidden in the real and imaginary parts (实部和虚部) of a complex eigenvector.)
    • One way to see how multiplication by the matrix A A A affects points is to plot an arbitrary initial point—say, x 0 = ( 2 , 0 ) \boldsymbol x_0 = (2, 0) x0=(2,0)—and then to plot successive images of this point under repeated multiplications by A A A.
      在这里插入图片描述

Eigenvalues and Eigenvectors of a Real Matrix That Acts on C n \mathbb C^n Cn

实矩阵中,复特征值以共轭复数对的形式出现

  • Let A A A be an n × n n \times n n×n matrix whose entries are real. If λ \lambda λ is an eigenvalue of A A A and x \boldsymbol x x is a corresponding eigenvector in C n \mathbb C^n Cn, then
    在这里插入图片描述Hence λ ‾ \overline \lambda λ is also an eigenvalue of A A A, with x ‾ \overline \boldsymbol x x a corresponding eigenvector.
  • This shows that when A A A is real, its complex eigenvalues occur in conjugate pairs.

实矩阵 [ a − b b a ] \begin{bmatrix} a &-b\\b&a\end{bmatrix} [abba] 对应的变换

  • The next example provides the basic “building block” for all real 2 × 2 2 \times 2 2×2 matrices with complex eigenvalues.

EXAMPLE 6

  • If C = [ a − b b a ] C =\begin{bmatrix} a &-b\\b&a\end{bmatrix} C=[abba], where a a a and b b b are real and not both zero, then the eigenvalues of C C C are λ = a ± b i \lambda= a \pm bi λ=a±bi . Also, if r = ∣ λ ∣ = a 2 + b 2 r = |\lambda|=\sqrt{ a^2 + b^2} r=λ=a2+b2 , then
    在这里插入图片描述where ϕ \phi ϕ is the angle between the positive x x x-axis and the ray (射线) from ( 0 , 0 ) (0, 0) (0,0) through ( a , b ) (a, b) (a,b). The angle ϕ \phi ϕ is called the a r g u m e n t argument argument (幅角) of λ = a + b i \lambda= a + bi λ=a+bi .
    在这里插入图片描述
  • Thus the transformation x ↦ C x \boldsymbol x\mapsto C\boldsymbol x xCx may be viewed as the composition of a rotation through the angle ϕ \phi ϕ and a scaling by ∣ λ ∣ |\lambda| λ (see Figure 3).
    在这里插入图片描述

含复特征值的实矩阵对应的旋转变换

  • Finally, we are ready to uncover the rotation that is hidden within a real matrix having a complex eigenvalue.

EXAMPLE 7

  • Let A = [ . 5 − . 6 . 75 1.1 ] A =\begin{bmatrix} .5 &-.6\\.75&1.1\end{bmatrix} A=[.5.75.61.1], λ = . 8 − . 6 i \lambda=.8-.6i λ=.8.6i, and v 1 = [ − 2 − 4 i 5 ] \boldsymbol v_1 =\begin{bmatrix} -2-4i\\5\end{bmatrix} v1=[24i5], as in Example 2. Also, let P P P be the 2 × 2 2 \times 2 2×2 real matrix
    在这里插入图片描述and let
    在这里插入图片描述By Example 6, C C C is a pure rotation because ∣ λ ∣ 2 = ( . 8 ) 2 + ( . 6 ) 2 = 1 |\lambda|^2=(.8)^2+(.6)^2=1 λ2=(.8)2+(.6)2=1. From C = P − 1 A P C = P^{-1}AP C=P1AP, we obtain在这里插入图片描述
  • Here is the rotation “inside” A A A! The matrix P P P provides a change of variable, say, x = P u \boldsymbol x = P\boldsymbol u x=Pu. The action of A A A amounts to a change of variable from x \boldsymbol x x to u \boldsymbol u u, followed by a rotation, and then a return to the original variable. See Figure 4.
    在这里插入图片描述The rotation produces an ellipse, as in Figure 1, instead of a circle, because the coordinate system determined by the columns of P P P is not rectangular and does not have equal unit lengths on the two axes.

在这里插入图片描述
PROOF

  • The proof uses the fact that if the entries in A A A are real, then A ( R e x ) = R e ( A x ) A(Re\boldsymbol x)= Re(A\boldsymbol x) A(Rex)=Re(Ax) and A ( I m x ) = I m ( A x ) A(Im\boldsymbol x)= Im(A\boldsymbol x) A(Imx)=Im(Ax)([Hint]: Write x = R e x + i ( I m x ) \boldsymbol x = Re \boldsymbol x + i(Im \boldsymbol x) x=Rex+i(Imx),), and if x \boldsymbol x x is an eigenvector for a complex eigenvalue, then R e x Re\boldsymbol x Rex and I m x Im\boldsymbol x Imx are linearly independent in R 2 \mathbb R^2 R2.

  • The phenomenon displayed in Example 7 persists in higher dimensions.
    • For instance, if A A A is a 3 × 3 3 \times 3 3×3 matrix with a complex eigenvalue, then there is a plane in R 3 \mathbb R^3 R3 on which A A A acts as a rotation (possibly combined with scaling). Every vector in that plane is rotated into another point on the same plane. We say that the plane is invariant under A A A.

EXAMPLE 8

  • The matrix A = [ . 8 − . 6 0 . 6 . 8 0 0 0 1.07 ] A =\begin{bmatrix} .8 &-.6&0\\.6&.8&0\\0&0&1.07\end{bmatrix} A=.8.60.6.80001.07 has eigenvalues . 8 ± . 6 i .8 \pm .6i .8±.6i and 1.07. Any vector w 0 \boldsymbol w_0 w0 in the x 1 x 2 x_1x_2 x1x2-plane (with third coordinate 0) is rotated by A A A into another point in the plane. Any vector x 0 \boldsymbol x_0 x0 not in the plane has its x 3 x_3 x3-coordinate multiplied by 1.07. 在这里插入图片描述

Supplementary exercises

  • Every eigenvalue of a symmetric matrix is necessarily real.

  • Let A A A be an n × n n \times n n×n real matrix with the property that A T = A A^T = A AT=A, let x \boldsymbol x x be any vector in C n \mathbb C^n Cn. Show that if A x = λ x A\boldsymbol x =\lambda \boldsymbol x Ax=λx for some nonzero vector x \boldsymbol x x in C n \mathbb C^n Cn, then, in fact, λ \lambda λ is real and the real part of x \boldsymbol x x is an eigenvector of A A A.

PROOF

  • (1) Let q = x ‾ T A x \boldsymbol q = \overline\boldsymbol x^TA\boldsymbol x q=xTAx. The equalities below show that q \boldsymbol q q is a real number by verifying that q ‾ = q \overline \boldsymbol q =\boldsymbol q q=q.
    q ˉ = x ‾ T A x ‾ = x T A x ‾ = x T A x ‾ = ( x T A x ‾ ) T = x ‾ T A T x = q \bar{q}=\overline{\overline{\mathbf{x}}^{T} A \mathbf{x}}=\mathbf{x}^{T} \overline{{A} \mathbf{x}}=\mathbf{x}^{T} A \overline{\mathbf{x}}=\left(\mathbf{x}^{T} A \overline{\mathbf{x}}\right)^{T}=\overline{\mathbf{x}}^{T} A^{T} \mathbf{x}=q qˉ=xTAx=xTAx=xTAx=(xTAx)T=xTATx=qSince q = x ‾ T A x \boldsymbol q = \overline\boldsymbol x^TA\boldsymbol x q=xTAx is a real number and x ‾ T A x = λ x ‾ T x \overline\boldsymbol x^TA\boldsymbol x=\lambda \overline\boldsymbol x^T\boldsymbol x xTAx=λxTx, λ x ‾ T x \lambda\overline\boldsymbol x^T\boldsymbol x λxTx is also a real number. Since x ‾ T x \overline\boldsymbol x^T\boldsymbol x xTx is a real number, λ \lambda λ is real.
  • (2) Since the real part of x \boldsymbol x x equals x + x ‾ 2 \frac{\boldsymbol x+\overline\boldsymbol x}{2} 2x+x and A x ‾ = λ x ‾ A\overline\boldsymbol x=\lambda\overline\boldsymbol x Ax=λx,
    A x + x ‾ 2 = 1 2 ( A x + A x ‾ ) = 1 2 ( λ x + λ x ‾ ) = λ x + x ‾ 2 A\frac{\boldsymbol x+\overline\boldsymbol x}{2}=\frac{1}{2}(A\boldsymbol x+A\overline\boldsymbol x)=\frac{1}{2}(\lambda\boldsymbol x+\lambda\overline\boldsymbol x)=\lambda\frac{\boldsymbol x+\overline\boldsymbol x}{2} A2x+x=21(Ax+Ax)=21(λx+λx)=λ2x+x
Solve、NSolve、Eigenvalues、Eigenvectors、Eigensystem都是MATLAB中常用的命令,主要用于解决数学问题,其中的功能与用法如下: 1. Solve命令:Solve命令可以用来求解方程组、不等式组、方程和不等式等问题。其基本语法为solve(equations, variables),其中equations是需要求解的方程组或不等式组,variables是待求变量。例如,求解方程组x+y=1,x-y=2,可以使用如下代码: ``` syms x y eq1 = x + y == 1; eq2 = x - y == 2; sol = solve([eq1, eq2], [x, y]); ``` 2. NSolve命令:NSolve命令是求解数值解的命令,可以用来求解方程或者方程组的数值解。其基本语法为NSolve(equations, variables, initial),其中equations是需要求解的方程组或方程,variables是待求变量,initial是变量的初值。例如,求解方程x^2-2x-1=0的数值解,可以使用如下代码: ``` syms x eq = x^2 - 2*x - 1 == 0; sol = NSolve(eq, x, 1); ``` 3. Eigenvalues命令:Eigenvalues命令是计算矩阵的特征值的命令,用于求解线性代数中的特征值问题。其基本语法为eig(A),其中A是待求解的矩阵。例如,求解矩阵A的特征值,可以使用如下代码: ``` A = [1 2 3; 4 5 6; 7 8 9]; eig(A); ``` 4. Eigenvectors命令:Eigenvectors命令是计算矩阵的特征向量的命令,用于求解线性代数中的特征向量问题。其基本语法为eig(A),其中A是待求解的矩阵。例如,求解矩阵A的特征向量,可以使用如下代码: ``` A = [1 2 3; 4 5 6; 7 8 9]; [V,D] = eig(A); V; ``` 5. Eigensystem命令:Eigensystem命令是计算矩阵的特征值和特征向量的命令,用于求解线性代数中的特征值和特征向量问题。其基本语法为eig(A),其中A是待求解的矩阵。例如,求解矩阵A的特征值和特征向量,可以使用如下代码: ``` A = [1 2 3; 4 5 6; 7 8 9]; [V,D] = eig(A); V; D; ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值