目录
分离变量法用于求解偏微分方程和边界条件都是线性和齐次的情形。
1. 线性


u的线性方程具有形式:
L(u)=f, 其中L是一个线性算子,f是已知的。
2. 齐次
在L(u)=f,中,如果f=0,则该方程称为齐次线性方程。检验一个方程是否为齐次方程最简单的办法就是,将恒等于0的函数带入,如果满足,则为齐次方程。
本文深入探讨了分离变量法,适用于线性、齐次的偏微分方程,特别是在解决热传导方程和拉普拉斯方程中的应用。详细阐述了解决具有零温度边界条件的热传导方程的步骤,包括乘积解形式、分离变量、特征值和特征函数,以及如何使用叠加原理确定解的系数。此外,还讨论了矩形和圆盘区域内的拉普拉斯方程解法,并总结了拉普拉斯方程的定性性质,如均值性质、最大值原理和适定性。
目录
分离变量法用于求解偏微分方程和边界条件都是线性和齐次的情形。


u的线性方程具有形式:
L(u)=f, 其中L是一个线性算子,f是已知的。
在L(u)=f,中,如果f=0,则该方程称为齐次线性方程。检验一个方程是否为齐次方程最简单的办法就是,将恒等于0的函数带入,如果满足,则为齐次方程。
1777
628
4098
4516
1196

被折叠的 条评论
为什么被折叠?