数学物理方法 08 分离变量法

 

§8.1 

8.1.1 

⎧ ⎩ ⎨ ⎪ ⎪ u tt =a 2 u xx ,0<x<l(1)u| x=0 =0,u| x=l =0(2)u| t=0 =φ(x),u t | t=0 =ψ(x)(3)  

8.1.2 

() 
1.: 
u(x,t)=X(x)T(t)(4) 
(1){T  a 2 μT=0(5)X  μX=0(6)  
(2)X(0)=0,X(l)=0(7) 

2. 
{X  μX=0(6)X(0)=0,X(l)=0(7)  
: 
(6)μ 
(7) 
μ(6) 
 

 
y  (x)+py  (x)+qy(x)=0 
r 2 +pr+q=0 
:r=p±p 2 4q − − − − − −   2 ={r 1 r 2   
r 1 r 2 (),y=c 1 e r 1 x +c 2 e r 2 x ; 
r 1 =r 2 =a(),y=(c 1 x+c 2 )e ax ; 
r 1 =a+ib,r 2 =aib,y=e ax (c 1 cosbx+c 2 sinbx) 

:μ=n 2 π 2 l 2  ,n=1,2,3,(8) 
:X n (x)=C n sinnπl x(9) 

3.T n (t) 
T  n (t)+a 2 n 2 π 2 l 2  T n (t)=0 
T n (t)=A  n cosnπal t+B  n sinnπal t(10) 

4. 
u(x,t)= n=1  (A n cosnπal t+B n sinnπal t)sinnπl x(11) 
A n =2l  l 0 φ(α)sinnπl αdα,B n =2nπα  l 0 ψ(α)sinnπl αdα(12) 

 
2l[l,l]: 
f(x)=a 0 2 + n=l  (a n cosnπl x+b n sinnπl x) 
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ a n =1l  l l f(x)cosnπl xdx,n=0,1,b n =1l  l l f(x)sinnπl xdx,n=1,2,  

f(x), 
f(x)= n=1  b n sinnπxl ,b n =2l  l 0 f(x)sinnπl xdx,n=1,2, 
f(x), 
f(x)=a 0 2 + n=1  a n cosnπxl ,a n =2l  l 0 f(x)cosnπl xdx,n=0,1, 

8.1.3 

1.: 
φc 2 ,ψc l ,(2),(11),(12). 
2.:A n =N n cosδ n ,B n =N n sinδ n  
ω n =nπal ,u(x,t)= n=l  u n =  N n cos(ω n tδ n )sinnπl x 
N n sinnπl x 
ω n  
δ n  
x m =mn l,m=0,1,,n(n+1) 
x k =2k12n l,k=1,2,,n(n) 

8.1.4 
1.(1)(3)(11),(12); 
⎧ ⎩ ⎨ ⎪ ⎪ u tt =a 2 u xx ,0<x<l(1)u| x=0 =0,u| x=l =0(2)u| t=0 =φ(x),u t | t=0 =ψ(x)(3)  
u(x,t)= n=1  (A n cosnπal t+B n sinnπal t)sinnπl x(11) 
A n =2l  l 0 φ(α)sinnπl αdα,B n =2nπa  l 0 ψ(α)sinnπl αdα(12) 

2. 
3.u(x,y,z,,t)=X(x)Y(y)Z(z)T(t), 
4.: 
 
 
 
() 

8.1.5 
f(x). 
:: 
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ u xx +u yy =0,0<x<a,0<y<b(13)u x | x=0 =0u x | x=a =0 }(14)u| y=b =0(15)u| y=0 =f(x)(16)  
1.u(x,y)=X(x)Y(y) 
(13){X  μX=0(17)Y  +μY=0(18)  
(14){X  (0)=0X  (a)=0 (19) 
(15)Y(b)=0(20) 

2.(17),(19): 
μ=n 2 π 2 a 2  ,n=0,1,2, 
X n (x)=A n cosnπa x 

3.YY  n 2 π 2 a 2  Y=0(18)   
Y n (y)=⎧ ⎩ ⎨ C 0 y+D 0 ,(n=0)C n coshnπa y+D n sinhnπa y=E n sinhnπa (y+F n ),(n0)  
E n =D 2 n C 2 n  − − − − − − −   ,F n =anπ th 1 C n D n   
Y n (b)=0:C 0 =D 0 b ,F n =b(E n 0) 
Y n (y)=⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ D 0 byb (n=0)E n shnπa (yb)(n0)  

4. 
u(x,y)= n=0  X n (x)Y n (y) 
=a 0 2 byb + n=1  a n cosnπa xshnπa (yb) 
u| y=0 =f(x)(16)f(x)=a 0 2 + n=1  a n cosnπa xsh(nπba ) 
a  n =2a  a 0 f(x)cosnπxa dx 
u(x,y)=a  0 2 byb + n=1  a  n shnπa (by)shnπba  cosnπa x 

§8.2 

8.2.1 

⎧ ⎩ ⎨ ⎪ ⎪ u tt =a 2 u xx +f(x,t),0<x<l,t>0(1)u| x=0 =0,u| x=l =0(2)u| t=0 =0,u t | t=0 =0(3)  

8.2.2 

1:⎧ ⎩ ⎨ ⎪ ⎪ u tt =a 2 u xx +f(x,t)u| t=0 =0u t | t=0 =0 ⎧ ⎩ ⎨ ⎪ ⎪ v tt a 2 v xx =0v| t=τ =0v t | t=τ =f(x,τ)  
u(x,t)= t 0 v(x,t;τ)dτ 

2: 
y  (x)+p(x)y  +Q(x)y=f(x)(A) 
y  (x)+p(x)y  +Q(x)y=0(B) 
(B):y g (x)=C 1 y 1 (x)+C 2 y 2 (x) 
(A) 
y s (x)=C 1 (x)y 1 (x)+C 2 (x)y 2 (x)(C) 
(C)(A): 
C  1 (x)y 1 (x)+C  2 (x)y 2 (x)=0 
C  1 (x)y  1 (x)+C  2 (x)y  2 (x)=f(x) 
C 1 (x)C 2 (x),y s (x) 

1.: 
{u tt =a 2 u xx u| x=0 =0,u| x=l =0  
u(x,t)=X(x)T(t): 
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ X  μX=0μ=(nπl ) 2 ,n=1,2,X(0)=0X(l)=0X n (x)=C n sinnπxl   

2.T n (t) 
u(x,t)= n=1  T n (t)sinnπxl  
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪  n=1  [T  n (t)+(anπl ) 2 T n (t)]sinnπxl =f(x,t)⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪  n=1  T n (0)sinnπxl =0 n=1  T  n (0)sinnπxl =0 ⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ T  n (t)+(anπl ) 2 T n (t)=f n (t){T n (0)=0T  n (0)=0    
f n (t)=2l  l 0 f(α,t)sinnπαl dα 

T n (t)=lnπa  t 0 f n (τ)sinnπal (tτ)dτ(4) 

3.(): 
u(x,t)= n=1  [lnπa  t 0 f n (τ)sinnπal (tτ)dτ]sinnπl x(5) 

8.2.3 

1.(1) (3)(5) 
2.使 
 
() 
 
3.: 
⎧ ⎩ ⎨ ⎪ ⎪ u tt =a 2 u xx +f(x,t)u| x=0 =0,u| x=l =0u| t=0 =φ(x),u t | t=0 =ψ(x)  
u=u i +u ii ,使 
§8.1:⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ u i tt =a 2 u i xx u i | x=0 =0,u i | x=l =0u i | t=0 =φ(x),u i t | t=0 =ψ(x) §8.2⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ u ii tt =a 2 u ii xx +f(x,t)u ii | x=0 =0,u ii | x=l =0u ii | t=0 =0,u ii t | t=0 =0  

8.2.4 

⎧ ⎩ ⎨ ⎪ ⎪ u t a 2 u xx =Asinωtu x | x=0 =0,u x | x=l =0u| t=0 =0  
: 
{X  μX=0X  (0)=0,X  (l)=0 μ=n 2 π 2 l 2  , 
X n (x)=C n cosnπxl ,n=0,1,2, 
u(x,t)= n=0  T n (t)cosnπxl ,n=0,1,2, 
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪  n=0  [T  n (t)+(anπl ) 2 T n (t)]cosnπxl =Asinωt n=0  T n (0)cosnπxl =0  

{T  0 (t)=AsinωtT 0 (0)=0 ,n=0⎧ ⎩ ⎨ T  n (t)+(nπal ) 2 T n (t)=0T n (0)=0 ,n0 
T 0 (t)=Aω (1cosωt);T n (t)=0(n=1,2,3,) 
u(x,t)=Aω (1cosωt) 

§8.3 

8.3.1 

⎧ ⎩ ⎨ ⎪ ⎪ u tt a 2 u xx =0,0<x<l,t>0(1)u| x=0 =g(t),u| x=l =h(t)(2)u| t=0 =φ(x),u t | t=0 =ψ(x)(3)  

8.3.2 

1.u(x,t)=X(x)T(t) 
(2){X(0)T(t)=g(t)X(l)T(t)=h(t) {X(0)=g(t)/T(t)X(l)=h(t)/T(t)  

2.: 
(1) 
u(x,t)=v(x,t)+w(x,t)(4) 
使{w| x=0 =u| x=0 =g(t)(5)w| x=l =u| x=l =h(t)(6)  

(2)w(x,t) 
w(x,t)=A(t)x+B(t) 
w(x,t)=h(t)g(t)l x+g(t)(7) 

(3)v(x,t) 
(1)(3)⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ v tt a 2 v xx =(w tt a 2 w xx )(8)v| x=0 =0,v| x=l =0(9)v| t=0 =φ(x)w(x,0)v t | t=0 =ψ(x)w t (x,0) }(10)  

(4)(1)(3) 
u(x,t)=v(x,t)+h(t)g(t)l x+g(t) 

8.3.3 

1. 
u(x,t)=v(x,t)+w(x,t), 
w(x,t)=A(t)x+B(t) 
w(x,t)=A(t)x 2 +B(t)x(2) 
A(t),B(t)使v(x,t) 
v(x,t):u(x,t)=v(x,t)+w(x,t) 
2. 

8.3.4 

sinωt 
⎧ ⎩ ⎨ ⎪ ⎪ u tt a 2 u xx =0,0<x<l(1)u(0,t)=0,u(l,t)=sinωt(2)u(x,0)=0,u t (x,0)=0,0xl(3)  
u(x,t)=v(x,t)+w(x,t)(4) 
w(x,t)=sinωtl x+0=xl sinωt(5) 
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ v tt a 2 v xx =ω 2 l xsinωt(6)v(0,t)=v(l,t)=0(7)v(x,0)=0,v t (x,0)=ωl x(8)  
v(x,t)=v i (x,t)+v ii (x,t)(9) 
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ v i tt a 2 v i xx =0v i (0,t)=v i (l,t)=0v i (x,0)=0,v i t (x,0)=ωl x (10)⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ v ii tt a 2 v ii xx =ω 2 l xsinωtv ii (0,t)=v ii (l,t)=0v ii (x,0)=v ii t (x,0)=0 (11) 

⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ v i tt a 2 v i xx =0v i (0,t)=v i (l,t)=0v i (x,0)=0,v i t (x,0)=ωl x (10) 
v i (x,t)= n=1  [A n cosnπal t+B n sinnπal t]sinnπl x 
A n =0,B n =2nπa  l 0 ωl αsinnπαl dα=2ωl(1) n (nπ) 2 a  
v i (x,t)=2ωlπ 2 a  n=1  (1) n n 2  sinnπal tsinnπl x(12) 

v ii (x,t)= n=1  T n (t)sinnπl x 
(11)⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪  n=1  [T  n (t)+(anπ) 2 l 2  T n (t)]sinnπxl =ω 2 l xsinωt n=1  T n (0)sinnπxl =0 n=1  T  n (0)sinnπxl =0  
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ T  n (t)+a 2 n 2 π 2 l 2  T n (t)=f n (t)T n (0)=0T  n (0)=0 (13) 
f n (t)=2l  l 0 ω 2 l αsinωtsinnπαl dα=2ω 2 nπ sinωt(1) n (14) 
T n (t)=lnπa  l 0 f n (τ)sinnπal (tτ)dτ 
ω n =nπal  
T n (t)=lnπa  l 0 2ω 2 (1) n+1 nπ sinωτsinnπa(tτ)l dτ 
=ω 2 l(1) n+1 a(nπ) 2  [sinω n t+sinωtω n +ω sinω n tsinωtω n ω ](15) 
v ii (x,t)= n=1  T n (t)sinnπl xw(x,t)=xl sinωt(5) 
v i (x,t)=2ωlπ 2 a  n=1  (1) n n 2  sinnπal tsinnπl x(12) 
u(x,t)=v i (x,t)+v ii (x,t)+w(x,t) 

§8.4线 

8.4.1线 

 
1.(ρ,φ,z):0ρ<,<φ<,<z< 
⎧ ⎩ ⎨ ⎪ ⎪ x=ρcosφy=ρsinφz=z ⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ r=x 2 +y 2  − − − − − −   φ=tg 1 yx z=z  

2.(ρ,φ):0ρ<,<φ< 
{ρcosφy=ρsinφ ⎧ ⎩ ⎨ ρ=x 2 +y 2  − − − − − −   φ=tg 1 yx   

3.(r,θ,φ):0r<,0<θ<π,<φ< 
⎧ ⎩ ⎨ ⎪ ⎪ x=rsinθcosφy=rsinθcosφz=rcosθ ⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ r=x 2 +y 2 +z 2  − − − − − − − − − −   θ=tg 1 x 2 +y 2  − − − − − −   z φ=tg 1 yx   

8.4.2 

使 

边界坐标
长方形
圆柱
圆锥

8.4.3线Δu 

1. 
uρ =ux cosφ+uy sinφ(1) 
 2 uρ 2  = 2 ux 2  cos 2 φ+2 2 uxy sinφcosφ+ 2 uy 2  sin 2 φ(2) 
uφ =ux ρsinφ+uy ρcosφ(3) 
 2 uφ 2  = 2 ux 2  ρ 2 sin 2 φ2 2 uxy ρ 2 sinφcosφ+ 2 uy 2  ρ 2 cos 2 φ(ux cosφ+uy sinφ)ρ(4) 
Δu=1ρ ρ (ρuρ )+1ρ 2   2 uφ 2  + 2 uz 2   

2. 
Δu=1ρ ρ (ρuρ )+1ρ 2   2 uφ 2   

3. 
Δu=1ρ r (r 2 ur )+1r 2 sinθ θ (sinθuθ )+1r 2 sin 2 θ  2 uφ 2   

§8.5线 

8.5.1Δu+λu=0(Δu=0) 

u(x,y,z;t)=T(t)v(x,y,z) 
u tt =a 2 Δu{T  +a 2 λT=0Δv+λv=0  
u t =DΔu{T  +λDT=0Δv+λv=0  
Δu=0 

8.5.2 

1.Δu+λu=0 
1ρ (ρuρ )+1ρ 2   2 uφ 2  + 2 uz 2  +λu=0 
u(ρ,φ,z)=R(ρ)Φ(φ)Z(z) 
⎧ ⎩ ⎨ ⎪ ⎪ Z  +μZ=0Φ  +n 2 Φ=0ρ 2 R  +ρR  +(k 2 ρ 2 n 2 )R=0  
μ,n 2 ,k 2  
Z,Φ,R 

λμ0x=kρ,y(x)=R(ρ),λμ=k 2  
x 2 y  +xy  +(x 2 n 2 )y=0nBessel 

2.Δu=0 
Δu+λu=0 
u(ρ,φ,z)=R(ρ)Φ(φ)Z(z) 
λ=0,Δu=0 
⎧ ⎩ ⎨ ⎪ ⎪ Z  +μZ=0Φ  +n 2 Φ=0ρ 2 R  +ρR  +(k 2 ρ 2 n 2 )R=0(μ=k 2 )  
x=kρ,y(x)=R(ρ) 
x 2 y  +xy  +(x 2 n 2 )y=0 

3.a 
{Δu=0,ρ<au| ρ=a =f(φ)  
(1)u(ρ,φ)=R(ρ)Φ(φ){Φ  +n 2 Φ=0ρ 2 R  (ρ)+ρR  (ρ)n 2 R=0  
(2){Φ  +n 2 Φ=0,n=0,1,2,Φ(φ+2π)=Φ(φ)  
Φ n (φ)=A  n cosnφ+B  n sinnφ 

(3){ρ 2 R  (ρ)+ρR  (ρ)n 2 R=0R(ρ)| ρ=0  R n (ρ)=C n ρ n  

(4)u(ρ,φ)= n=0  ρ n (A n cosnφ+B n sinnφ) 
 n=0  (A n a n cosnφ+B n a n sinnφ)=f(φ) 
α 0 =A 0 a 0 =12π  π π f(φ)dφ,α n =A n a n =1π  π π f(φ)cosφdφ 
β n =B n a n =1π  π π f(φ)sinφdφ 
u(ρ,φ)= n=0  (ρa ) n (α n cosnφ+β n sinnφ) 

8.5.3 

1.Δu+λu=0 
1r 2  r (r 2 ur )+1r 2 sinθ θ (sinθuθ )+1r 2 sin 2 θ  2 uφ 2  +λu=0(1) 
u(r,θ,φ)=R(r)y(θ,φ) 
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ r 2 d 2 Rdr 2  +2rdRdr +[k 2 r 2 l(l+1)]R=0(2)1sinθ θ (sinθyθ )+1sin 2 θ  2 yφ 2  +l(l+1)y=0(3)  

(3)⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ y(θ,φ)=Θ(θ)Φ(φ)Φ  +m 2 Φ=0,m=0,1,2,(4)1sinθ ddθ (sinθdΘdθ )+[l(l+1)m 2 sin 2 θ ]Θ=0(5)  

u(r,θ,φ)=R(r)Θ(θ)Φ(φ),(λ=k 2 ) 
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ r 2 d 2 Rdr 2  +2rdRdr +[k 2 r 2 l(l+1)]R=0(2)Φ  +m 2 Φ=0,m=0,1,2,(4)1sinθ ddθ (sinθdΘθ )+[l(l+1)m 2 sin 2 θ ]Θ=0(5)  

l(l+1);m 2 ;l(l+1),m 2  
R(r),Φ,Θ 

x=kr,y(x)/x   =R(r) 
(2)x 2 y  +xy  +[x 2 (l+12 ) 2 ]y=0(2)   
x=cosθ,y(x)=Θ(θ) 
(5)(1x 2 )y  2xy  +[l(l+1)]m 2 1x 2  ]y=0(5)   
(2),(2)  Bessel;(5),(5)  Legender 

2.Δu=0 
Δu+λu=0,u(r,θ,φ)=R(r)Θ(θ)Φ(φ) 
λ=0,Δu=0 
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ Φ  +m 2 Φ=0,m=0,1,2,(4)1sinθ ddθ (sinθdΘdθ )+[l(l+1)m 2 sin 2 θ ]Θ=0(5)r 2 d 2 Rdr 2  +2rdRdr l(l+1)R=0(6) Euler 

x=cosθ,y(x)=Θ(θ) 
(5)(1x 2 )y  2xy  +[l(l+1)m 2 1x 2  ]y=0(5)  Legendre 

8.5.4 

1. 
Δu=1ρ ρ (ρuρ )+1ρ 2   2 uφ 2  + 2 uz 2   

2. 
Δu=1ρ ρ (ρuρ )+1ρ 2   2 uφ 2   

3. 
Δu=1r 2  r (r 2 ur )+1r 2 sinθ θ (sinθuθ )+1r 2 sin 2 θ  2 uφ 2   

4. 
u(ρ,φ,z)=R(ρ)Φ(φ)Z(z) 
Δu+λu=0Δu=0 ⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ Z  +μZ=0Φ  +n 2 Φ=00k 2 ={λμμ ρ 2 R  +ρR  +(k 2 ρ 2 n 2 )R=0  
x=kρ,y(x)=R(ρ) 
x 2 y  +xy  +(x 2 n 2 )y=0 
μ,n,k 2  
:Z,Φ,R 

5. 
u(r,θ,φ)=R(r)Θ(θ)Φ(φ) 
Δu+λu=0⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ r 2 d 2 Rdr 2  +2rdRdr +[k 2 r 2 l(l+1)]R=0Φ  +m 2 Φ=0,m=0,1,2,1sinθ ddθ (sinθdΘdθ )+[l(l+1)m 2 sin 2 θ ]Θ=0  

Δu=0⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ Φ  +m 2 Φ=0,m=0,1,2,1sinθ ddθ (sinθdΘdθ )+[l(l+1)m 2 sin 2 θ ]Θ=0r 2 d 2 Rdr 2  +2rdRdr l(l+1)R=0  
l(l+1),m 2 ,l(l+1),m 2  
R(r),Φ,Θ 
(1x 2 )y  2xy  +[l(l+1)m 2 1x 2  ]y=0(5)   

  • 3
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值