门限回归模型的思想_重磅!门限回归总结(Eviews版本)

来源 | 计量经济学服务中心综合整理

转载请联系

e51ed1d8878f9913a35c776401778cbb.gif

一、Threshold Regression Estimation

阈值回归模型描述了一种简单的非线性回归模型。TR规范很受欢迎,因为它们很容易。估计和解释,并能产生有趣的非线性和丰富的动力学。在TR的应用中,有样品分裂,多重平衡。非常流行的阈值自回归(TAR)和自激励阈值自回归(SETAR)(Hansen 1999, 2011;波特2003)。

在功能强大的特性中,Eviews有选择最佳阈值TR模型选择工具。能够从候选列表中,并且能够指定两种状态的变化和非变化的变量。例如,您可以轻松地指定两种模式的门限模型并允许EViews 估计最优变量和参数、阈值、系数和协方差。并对变化和回归参数的估计。

二、Smooth Threshold Regression Estimation

EViews 10为它的计量经济和统计特性提供了令人兴奋的新添加和改进。详情可以阅读重磅首发|Eviews10.0新增的十大功能变化(一)

Eviews10.0新版本主要在Eviews软件界面、数据处理(现场数据展示、与R兼容性、与UN、欧盟、BLS等数据接口)、新命令、图形表格和计算等方面均有更新。

新功能:Smooth Threshold Regression Estimation

Smooth Transition Autoregressive (STAR) modeling (Teräsvirta, 1994) is an extremely popular approach for nonlinear time series analysis. STAR models, which are a special case of Smooth Transition Regression (STR) models, embed regime-dependent linear auto-regression specifications in a smooth transition nonlinear regression framework. 

EViews tools for estimation of two-regime STR models with unknown parameters for the shape and location of the smooth threshold. EViews estimation supports several different transition functions, provides model selection tools for selecting

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值