比较入门的一个教程,没有什么技术含量。
下面这个链接的py程序是我们用来下载数据集的,请下载保存。
https://raw.githubusercontent.com/tensorflow/tensorflow/master/tensorflow/examples/tutorials/mnist/input_data.py
import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
在python里运行这两句话,就可以把数据集合下载到MNIST_data目录下。这个目录可以自己改名字,下面会用到。运行截图如下
下面这个链接的程序是构建网络然后训练MNIST的程序
https://raw.githubusercontent.com/tensorflow/tensorflow/master/tensorflow/examples/tutorials/mnist/fully_connected_feed.py
下载后有个地方需要修改一下120行,120行原来内容如下
data_sets = input_data.read_data_sets(FLAGS.input_data_dir, FLAGS.fake_data)
将FLAGS.input_data_dir 修改为刚才我们下载MNIST数据集的绝对地址,修改后如下
def_sets = input_data.read_data_sets("/home/kai.meng/MNIST_data/", FLAGS.fake_data)
这个地址每个人都不一样,根据你下载到哪里而决定。
然后就可以运行了,我使用的是linux,直接python fully_connected_feed.py
结果如下
测试集正确率为0.9028,有点低这是因为默认只跑了2000次,编辑fully_connected_feed.py的236行
parser.add_argument(
'--max_steps',
type=int,
default=2000,
help='Number of steps to run trainer.'
)
将 default=2000,改为 default=20000, 保存运行
测试集的正确率为0.9643,还算可以。教程到此结束。很基础的入门教程。有任何问题给我留言吧