手把手在tensorflow上训练Mnist数据集。全连接层。

比较入门的一个教程,没有什么技术含量。

下面这个链接的py程序是我们用来下载数据集的,请下载保存。

https://raw.githubusercontent.com/tensorflow/tensorflow/master/tensorflow/examples/tutorials/mnist/input_data.py

import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
在python里运行这两句话,就可以把数据集合下载到MNIST_data目录下。这个目录可以自己改名字,下面会用到。运行截图如下


下面这个链接的程序是构建网络然后训练MNIST的程序

https://raw.githubusercontent.com/tensorflow/tensorflow/master/tensorflow/examples/tutorials/mnist/fully_connected_feed.py

下载后有个地方需要修改一下120行,120行原来内容如下

  data_sets = input_data.read_data_sets(FLAGS.input_data_dir, FLAGS.fake_data)

将FLAGS.input_data_dir 修改为刚才我们下载MNIST数据集的绝对地址,修改后如下

def_sets = input_data.read_data_sets("/home/kai.meng/MNIST_data/", FLAGS.fake_data)

这个地址每个人都不一样,根据你下载到哪里而决定。

然后就可以运行了,我使用的是linux,直接python fully_connected_feed.py

结果如下


测试集正确率为0.9028,有点低这是因为默认只跑了2000次,编辑fully_connected_feed.py的236行

  parser.add_argument(
      '--max_steps',
      type=int,
      default=2000,
      help='Number of steps to run trainer.'
  )

将      default=2000,改为      default=20000,   保存运行

测试集的正确率为0.9643,还算可以。教程到此结束。很基础的入门教程。有任何问题给我留言吧

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值