本文复述Michael Artin所著Algebra一书第7.4节的两个证明:
- 正二十面体群
是一个单群.
- 五阶交错群
和
同构.
由此可以得到
定义
正二十面体群: 正二十面体群

以正十二面体为例, 它的旋转对称包括:
- 以中心-任意顶点为轴的
角度旋转对称.
- 以中心-任意面中点为轴的
角度旋转对称.
- 以中心-任意棱中点为轴的
角度旋转对称.
这样的旋转共有60种, 而且形成了
共轭类: 群
下形成的轨道, 记作
本文复述Michael Artin所著Algebra一书第7.4节的两个证明:
由此可以得到
正二十面体群: 正二十面体群
以正十二面体为例, 它的旋转对称包括:
这样的旋转共有60种, 而且形成了
共轭类: 群
下形成的轨道, 记作