群同态基本定理证明_正二十面体群和五阶交错群

本文详细介绍了正二十面体群和五阶交错群的同构关系,通过分析正十二面体的旋转对称性,展示了群的共轭类,并利用群同态基本定理进行证明。文中讨论了以中心-顶点、面中点和棱中点为轴的旋转,揭示了群的结构,最终得出正二十面体群是一个单群,且与五阶交错群同构的结论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文复述Michael Artin所著Algebra一书第7.4节的两个证明:

  1. 正二十面体群
    是一个单群.
  2. 五阶交错群
    同构.

由此可以得到

是一个单群.

定义

正二十面体群: 正二十面体群

是三维旋转群
的一个60阶有限子群, 刻画了正十二面体/正二十面体(互为对偶正多面体)的60种旋转对称.

d44563b47d506dae0c7f9bd998513ae0.png
正十二面体和正二十面体.

以正十二面体为例, 它的旋转对称包括:

  • 以中心-任意顶点为轴的
    角度旋转对称.
  • 以中心-任意面中点为轴的
    角度旋转对称.
  • 以中心-任意棱中点为轴的
    角度旋转对称.

这样的旋转共有60种, 而且形成了

的一个子群. 由于正十二面体和正二十面体的顶点和面可以互换, 以上旋转对称对正二十面体也成立.

共轭类: 群

中元素
的共轭类是指
在共轭作用

下形成的轨道, 记作

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值