正三角形的二面体群
前文讲到了一个正多边形的旋转构成了循环群,也讲了正三角形的symmetry group。如果只保留Symmetry group的一个对称轴,就构成了二面体群Dihedral group。需要注意的是,symmetry group的对称轴是变动的,比如S1是由点1所在的对称轴,随着各种运动,点1 的位置变化了,那么S1的对称轴也跟着变化。而二面体群的对称轴是绝对位置,与旋转到什么状态没有关系。这唯一的对称轴的操作叫做翻转flip,缩写为f。之所以称为二面体群,是因为他的凯莱图,呈现一个二面体形状。二面体是几何里,对各种柱体的专门名词。下图是正三角形的旋转和翻转形成的二面体群
D
3
D_3
D3。红色线条代表旋转,蓝色线条代表翻转。
但是教科书上一般不这么画,我这样画是为了解释清楚为什么叫二面体。一般是这样画:
翻转操作
需要注意的是,对于
D
3
D_3
D3以下等式成立:
r
f
⋅
r
f
=
e
r
2
f
⋅
r
2
f
=
e
rf \cdot rf = e\\ r^2f \cdot r^2f = e\\
rf⋅rf=er2f⋅r2f=e
所以
r
2
f
r^2f
r2f和
r
f
rf
rf都是翻转。由此乘法表如下:
⋅
e
r
r
2
f
r
f
r
2
f
e
e
r
r
2
f
r
f
r
2
f
r
r
r
2
e
r
f
r
2
f
f
r
2
r
2
e
r
r
2
f
f
r
f
f
f
r
2
f
r
f
e
r
2
r
r
f
r
f
f
r
2
f
r
e
r
2
r
2
f
r
2
f
r
f
f
r
2
r
e
\begin {array}{c|c} \cdot & e & r & r^2 & f & rf & r^2f \\ \hline e & e & r & r^2 & f & rf & r^2f \\ r & r & r^2 & e &rf& r^2f & f\\ r^2 & r^2 & e & r & r^2f& f & rf \\ f & f & r^2f & rf & e & r^2 & r\\ rf & rf & f & r^2f & r & e & r^2\\ r^2f & r^2f & rf & f & r^2 & r & e \end {array}
⋅err2frfr2feerr2frfr2frrr2er2ffrfr2r2errfr2ffffrfr2ferr2rfrfr2ffr2err2fr2ffrfrr2e
所以呢,正三角形的symmetry group实际上是和
D
3
D_3
D3同构的。用
S
1
S_1
S1代替
D
3
D_3
D3中的
f
f
f,
S
2
S_2
S2代替
r
2
f
r^2f
r2f,
S
3
S_3
S3代替
r
f
rf
rf,就可以了,所以这两个群是一样的群。