五元交错群A5是单群

有限单群(有限群G只有两个平凡的正规子群,定义和素数很像)
当G的子群H是正规子群时,则可考虑G模H的商群,H不是正规子群做商只能得到陪集,不是群

G为有限交换群:
则G是单群iff G的阶为P
(结合之前的结论素数阶群一定是循环群,素数阶群一定是唯一的)


因Abel群G的任何子群都是G的正规子群,故Abel群G为单群当且
仅当G无非平凡子群,若G是有限阶的,由Sylow第- -定理知G无非平凡子群当
且仅当G的阶为素数.
此时,Va∈G且a≠e有G=(a).
无限阶的Abel群一定有(非平凡)正规子群
若G是无限阶的,则(< a >) 是G的正规子群(Va∈G,a≠e).若(< a >)是有限阶的,则(< a >) 是非平凡的.故设(< a >) 是无限阶的,
则<a^2>是非平凡的,即任何无限阶的Abel群都有非平凡的正规子群.

一些已知信息(条件)

|A5|=60,A5不是Abel群。
(其实An,n>=5都是单群,且60阶单群只有A5一个1)

Sn可由n-1个对换生成:

( 1 , 2 ) , ( 1 , 3 ) , ( 1 , 4 ) , ( 1 , 5 ) … … ( 1 , n ) (1,2),(1,3),(1,4),(1,5)……(1,n) (1,2),(1,3),(1,4),(1,5)(1,n)
并且有任意两个对换是共轭的

Sn可由以下生成:

( 1 , 2 ) , ( 1 , 2 , 3 ) , ( 1 , 2 , 3 , 4 ) , … … ( 1 , 2 , 3 , … … n ) (1,2),(1,2,3),(1,2,3,4),……(1,2,3,……n) (1,2),(1,23),(123,4)(1,23n)
任意两个元素非共轭

An中元素都是偶置换,但是对换是奇置换,An生成元不是对换

验证一个群为单群……

1.选取群的一组生成元

An由所有的三轮换生成(n>=3)

A n = < ( i , j , k ) > An=<(i,j,k)> An=<(i,j,k)>
An中元素为偶置换,可分解为偶数个对换的乘积。
下证明任意两个对换的乘积可有三轮换生成
1)(i,j)(i,j)=(1)=(1,2,3)(1,2,3)(1,2,3)=(1,2,3)(1,3,2)
2)(i,j)(i,k)=(i,j,k)
3)(i,j)
(k,l)=(i,j)(j,k)(j,k)(k,l)=(i,j,k)*(j,k,l)

2.验证生成元组是一个共轭类

                σ(1,2,3)σ^(-1)
                σ((1,2,3))=(σ(1),σ(2),σ(3))=(i,j,k)

σ = ( 1 2 3 … … n i j k … … σ ( n ) ) σ=\left( \begin{array} { l l } { 1 \qquad2 \qquad3 } & { ……n } \\ { i\qquad j\qquad k } & { …… σ(n) } \end{array}\right) σ=(123ijknσ(n))
当n>=5时,如果σ不是偶置换,只需要将i,j,k后的元素进行一个对换即可

3.H是G的正规子群,要证H=G,只需证H中含有生成元组的元素,即验证H中有三轮换

σ ∈ A n , σ ! = ( 1 ) , σ 可 写 成 不 相 交 的 轮 换 的 乘 积 σ\in An, σ!=(1), σ可写成不相交的轮换的乘积 σAn,σ!=(1),σ
利 用 群 的 封 闭 等 性 质 分 类 证 明 利用群的封闭等性质分类证明
0 ) 设 σ = ( 1 , 2 , 3 , … … , r ) τ , n > = 4 时 , 构 造 0)设σ=(1,2,3,……,r)τ,n>=4时,构造 0)σ=123,rτ,n>=4
考 虑 σ 的 一 个 共 轭 λ σ λ − 1 ( λ = ( 1 , 2 , 3 ) ∈ A n ) , λ σ λ − 1 σ ( − 1 ) = ( 2 , 3 , 1 , 4 … … r ) τ σ ( − 1 ) , 消 去 了 τ 考虑σ的一个共轭λσλ^{-1}(λ=(1,2,3)\in An),λσλ^{-1}σ^(-1)=(2,3,1,4……r)τσ^(-1),消去了τ σλσλ1(λ=(1,2,3)An)λσλ1σ(1)=(2,3,1,4r)τσ(1),τ
( 1 , 2 , 3 ) [ σ ( 1 , 3 , 2 ) σ ( − 1 ) ] = ( 1 , 2 , 3 ) ( 2 , 4 , 3 ) = ( 1 , 2 ) ( 2 , 3 ) ( 3 , 2 ) ( 2 , 4 ) = ( 1 , 2 , 4 ) (1,2,3) [σ(1,3,2)σ^(-1)]=(1,2,3)(2,4,3) =(1,2)(2,3)(3,2)(2,4)=(1,2,4) (1,2,3)[σ(1,3,2)σ(1)]=(1,2,3)(2,4,3)=(1,2)(2,3)(3,2)(2,4)=(1,2,4)
注 : 将 x y x − 1 y ( − 1 ) 称 为 换 位 子 , 其 包 含 两 个 共 轭 的 结 构 注:将xyx^{-1}y^(-1)称为换位子,其包含两个共轭的结构 xyx1y(1)
i ) 设 σ = ( 1 , 2 , 3 ) τ , τ 是 一 些 对 换 的 乘 积 , 且 τ 与 ( 1 , 2 , 3 ) 不 交 换 i)设σ=(1,2,3)τ,τ是一些对换的乘积,且τ与(1,2,3)不交换 i)σ=123τ,τ,τ(1,2,3)
( 1 , 2 , 3 ) ∗ ( 1 , 2 , 3 ) = ( 1 , 3 , 2 ) , σ 2 = ( 1 , 3 , 2 ) τ 2 (1,2,3)*(1,2,3)=(1,3,2),σ^2=(1,3,2)τ^2 123123=132,σ2=132τ2
i i ) 设 σ = ( 1 , 2 , 3 ) ( 4 , 5 , 6 ) τ , τ 是 一 些 对 换 的 乘 积 , 则 ( 1 , 2 , 3 , 4 , 5 ) ∈ H ii)设σ=(1,2,3)(4,5,6)τ,τ是一些对换的乘积,则(1,2,3,4,5)\in H ii)σ=(123)(4,5,6)τ,τ,(1,2,3,4,5)H
i i i i ) 设 σ = ( 1 , 2 , 3 ) τ , τ 是 一 些 对 换 的 乘 积 iiii)设σ=(1,2,3)τ,τ是一些对换的乘积 iiii)σ=123τ,τ
i v ) 设 σ = ( 1 , 2 ) ( 3 , 4 ) τ iv)设σ=(1,2)(3,4)τ iv)σ=(1,2)(3,4)τ

https://tieba.baidu.com/p/6499330369
https://blog.csdn.net/oldlinux/article/details/77586643
https://zhidao.baidu.com/question/250224741.html


  1. 60阶单群同构于A5的证明:https://www.cnblogs.com/qq3232361332/p/6054300.html ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值