机器学习里面的基函数_机器学习技法 之 径向基函数网络(RBF Network)

本文深入探讨了径向基函数网络(RBF Network),它是从高斯支持向量机的概念出发,通过线性组合径向基假设函数来构建。RBF Network的输出层采用类似于高斯函数的径向基函数,通过距离计算来评估输入数据的相似性。文章介绍了RBF Network的结构,包括完全RBF网络、最邻近算法、正则化方法,并讨论了K均值算法在RBF网络中的应用。通过聚类和中心点选择,RBF Network可以实现特征转换和分类。同时,文章指出,虽然完全RBF网络存在过拟合问题,但通过正则化和选择合适的中心点数量,可以改善这一状况。
摘要由CSDN通过智能技术生成

径向基函数网络(Radial Basis Function Network):就是将基假设函数进行线性聚合。html

径向基函数网络假设函数(RBF Network Hypothesis)

先回顾一下高斯支持向量机(Gaussian SVM):web

g

s

v

m

(

x

)

=

sign

(

S

V

α

n

y

n

exp

(

γ

x

x

n

2

)

+

b

)

g _ { \mathrm { svm } } ( \mathbf { x } ) = \operatorname { sign } \left( \sum _ { \mathrm { SV } } \alpha _ { n } y _ { n } \exp \left( - \gamma \left\| \mathbf { x } - \mathbf { x } _ { n } \right\| ^ { 2 } \right) + b \right)gsvm​(x)=sign(SV∑​αn​yn​exp(−γ∥x−xn​∥2)+b)算法

其其实是找出系数 α

n

\alpha_nαn​ 将以 x

n

\mathbf { x } _ { n }xn​ 为中心的高斯函数进行线性结合。网络

Gaussian kernel 又叫 Radial Basis Function (RBF) kernel,其中 Radial 指的是这里之关系 x

\mathbf { x }x 与中心 x

n

\mathbf { x } _ { n }xn​ 之间的距离(相似于一种放射线长度求解)。app

那么写出高斯支持向量机中的径向基假设函数:dom

g

n

(

x

)

=

y

n

exp

(

γ

x

x

n

2

)

g _ { n } ( \mathbf { x } ) = y _ { n } \exp \left( - \gamma \left\| \mathbf { x } - \mathbf { x } _ { n } \right\| ^ { 2 } \right)gn​(x)=yn​exp(−γ∥x−xn​∥2)机器学习

那么高斯支持向量机能够改写为:svg

g

s

v

m

(

x

)

=

sign

(

S

V

α

n

g

n

(

x

)

+

b

)

g _ { \mathrm { svm} } ( \mathbf { x} ) = \operatorname { sign } \left( \sum _ { \mathrm { SV } } \alpha _ { n } g _ { n } ( \mathbf { x } ) + b \right)gsvm​(x)=sign(SV∑​αn​gn​(x)+b)函数

能够看出被选择的径向基假设函数的线性结合(linear aggregation of selected radial hypotheses)。学习

RBF Network 的网络结构示意图以下:

实际上 RBFNet 是 NNet 的一个分支,可见输出层虽然使用的是投票,可是这也是一种线性组合因此与神经网络是同样的。可是隐含层是不一样的,在神经网络中使用的是内积加 tanh 输出,而在 RBFNet 中使用的是距离计算加高斯函数。

那么能够写出 RBFNet 的输出假设函数:

h

(

x

)

=

Output

(

m

=

1

M

β

m

RBF

(

x

,

μ

m

)

+

b

)

h ( \mathbf { x } ) = \text { Output } \left( \sum _ { m = 1 } ^ { M } \beta _ { m } \operatorname { RBF } \left( \mathbf { x } , \mu _ { m } \right) + b \right)h(x)=Output(m=1∑M​βm​RBF(x,μm​)+b)

其中 μ

m

\mu _ { m }μm​ 是中心点,β

m

\beta _ { m }βm​ 是投票系数。

对比与高斯支持向量机:

RBF(径向基函数)选择的是高斯函数。

Output(输出)选择 sign 作为二分类输出。

M 则是支持向量的个数(#SV)。

μ

m

\mu _ { m }μm​ 则是支持向量 x

m

\mathbf{x}_mxm​。

β

m

\beta _ { m }βm​ 则是经过 SVM Dual 问题求解 α

m

\alpha_mαm​ 与 y

m

y_mym​ 的乘积。

不失广泛性的来讲:若是要学习径向基函数网络的话,须要选择四个部分:径向基函数 RBF ,输出层假设函数 Output ,中心点的求取 μ

m

\mu _ { m }μm​ ,投票的系数 β

m

\beta _ { m }βm​。

实际上核技巧实际上就是根据在 Z

\mathcal ZZ 空间上的内积求取类似性,好比多项式核:

Poly

(

x

,

x

)

=

(

1

+

x

T

x

)

2

\operatorname { Poly } \left( \mathbf { x } , \mathbf { x } ^ { \prime } \right) = \left( 1 + \mathbf { x } ^ { T } \mathbf { x } ^ { \prime } \right) ^ { 2 }Poly(x,x′)=(1+xTx′)2

而RBF则是直接经过在 X

\mathcal XX 空间上的距离求取类似性,通常认为距离越近类似性越大,也就是说距离与类似性单调相关。好比下面这个截断类似性函数:

Truncated

(

x

,

x

)

=

[

x

x

1

]

(

1

x

x

)

2

\text { Truncated } \left( \mathbf { x } , \mathbf { x } ^ { \prime } \right) = \left[ \left\| \mathbf { x } - \mathbf { x } ^ { \prime } \right\| \leq 1 \right] \left( 1 - \left\| \mathbf { x } - \mathbf { x } ^ { \prime } \right\| \right) ^ { 2 }Truncated(x,x′)=[∥x−x′∥≤1](1−∥x−x′∥)2

而高斯函数则处于他们的交集。

Gaussian

(

x

,

x

)

=

exp

(

γ

x

x

2

)

\text { Gaussian } \left( \mathbf { x } , \mathbf { x } ^ { \prime } \right) = \exp \left( - \gamma \left\| \mathbf { x } - \mathbf { x } ^ { \prime } \right\| ^ { 2 } \right)Gaussian(x,x′)=exp(−γ∥x−x′∥2)

类似性是很好的一种特征转换方法。在RBF中则是将中心距离类似性做为特征转换的。其余的类似性函数好比神经元函数或者DNA序列类似性函数:

Neuron

(

x

,

x

)

=

tanh

(

γ

x

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值