python花瓣长度和花瓣宽度散点图鸢尾花_鸢尾花

这篇博客探讨了使用Python进行鸢尾花数据集的分析,涉及KMeans聚类和分类算法。通过导入相关库,如sklearn,进行数据读取、训练模型,分析花瓣长度和宽度的散点图,以及比较不同参数设置下的模型效果。内容涵盖了从数据预处理到模型评估的全过程。
摘要由CSDN通过智能技术生成

目录AdaBoost算法代码(鸢尾花分类)一、导入模块二、导入数据三、构造决策边界四、训练模型4.1 训练模型(n_e=10, l_r=0.8)4.2 可视化4.3 训练模型(n_estimators=300, learning_rate=0.8)4.4 训练模型(n_estimators=300, learning_rate=0.5)4.5 训练模型(n_estimators=600, learni

鸢尾花的分类三分类问题2020-12-06 15:01:59

鸢尾花的分类

首先先导入会使用到的包

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from numpy import random

import numpy as np

import numpy.random as rd

import matplotlib.pyplot as plt

import math

然后对数据

实现鸢尾花数据的读入2020-10-22 15:04:00

1.鸢尾花数据集再介绍:

鸢尾花数据集共有数据150组

每组包括花萼长、花萼宽、花瓣长、花瓣宽4个输入特征

同时给出了每一组特征对应的鸢尾花类别类别包括SetosaIris(狗尾草鸢尾),VersicolourIris(杂色鸢尾),VirginicaIris(弗吉尼亚鸢尾)三类,分别用数字0,1,2表示

from skle

使用sklearn的决策树实现iris鸢尾花数据集的分类

要求:

建立分类模型,至少包含4个剪枝参数:max_depth、min_samples_leaf 、min_samples_split、max_features和criterion参数。

运用GridSearchCV,寻找出最优参数。

绘制出在不同的max_depth下的学习曲线。

步骤:

一、导入各种我们需要的

主要步骤:

1.准备数据

数据集读入

数据集乱序

将数据集分为训练集和测试集

将输入特征和标签配对,每次喂入神经网络一小撮(batch)

2.搭建网络

定义神经网络中所有可训练参数

3.参数优化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值