目录AdaBoost算法代码(鸢尾花分类)一、导入模块二、导入数据三、构造决策边界四、训练模型4.1 训练模型(n_e=10, l_r=0.8)4.2 可视化4.3 训练模型(n_estimators=300, learning_rate=0.8)4.4 训练模型(n_estimators=300, learning_rate=0.5)4.5 训练模型(n_estimators=600, learni
鸢尾花的分类三分类问题2020-12-06 15:01:59
鸢尾花的分类
首先先导入会使用到的包
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from numpy import random
import numpy as np
import numpy.random as rd
import matplotlib.pyplot as plt
import math
然后对数据
实现鸢尾花数据的读入2020-10-22 15:04:00
1.鸢尾花数据集再介绍:
鸢尾花数据集共有数据150组
每组包括花萼长、花萼宽、花瓣长、花瓣宽4个输入特征
同时给出了每一组特征对应的鸢尾花类别类别包括SetosaIris(狗尾草鸢尾),VersicolourIris(杂色鸢尾),VirginicaIris(弗吉尼亚鸢尾)三类,分别用数字0,1,2表示
from skle
使用sklearn的决策树实现iris鸢尾花数据集的分类
要求:
建立分类模型,至少包含4个剪枝参数:max_depth、min_samples_leaf 、min_samples_split、max_features和criterion参数。
运用GridSearchCV,寻找出最优参数。
绘制出在不同的max_depth下的学习曲线。
步骤:
一、导入各种我们需要的
主要步骤:
1.准备数据
数据集读入
数据集乱序
将数据集分为训练集和测试集
将输入特征和标签配对,每次喂入神经网络一小撮(batch)
2.搭建网络
定义神经网络中所有可训练参数
3.参数优化