证明函数有界的步骤_「高等数学」证明数列收敛并求该数列的极限,利用单调有界准则...

本文介绍了数列极限的基本概念及收敛数列的定义,并通过一个具体的例题演示了如何利用单调有界准则证明数列的收敛性及其极限的求解过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数列:指的是以正整数集为定义域的函数,是一列有序的数。

极限:某一个函数中的某一个变量,这个变量在变大或者变小的过程中,逐渐向一个确定的数值不断靠近,但是又永远达不到这个数值,那这个数值就会被称作极限值。

而数列恰好是函数,数列极限就是要求出这个数列在变大或者变小的过程中,逐渐靠近的一个确定数值是什么,我们在求数列极限的时候,要转化成函数极限来做。

de161bc3cdaeec131ec03eaac7b7e214.png

图一

如图所示,我给出这样一道例题,设定一个数列xn,然后相关的条件,证明它收敛,以及这个数列的极限。(证明数列收敛,有时候也只要证明它是一个单调有界的数列,即可直接证明它是一个收敛数列)

拿到题目的时候不要急着做,先对题目进行一个分析。

它说要收敛,也就是证明该数列为收敛数列,想一想对于收敛数列来说,收敛的定义是什么,对于数列而言,如果说存在一个数列{Xn},而且有一个固定的实数C,如果给出任意的y>0,存在一个正整数N,使得n>N,有Xn-C的绝对值恒小于y,就称作该数列为收敛数列,注意,这里数列的极限就是C,各个点的概念不能够忘记,一定要特别清楚,不清楚的话,即便知道收敛数列的定义也很难做出这道题目了。

c34c0c5a13ee70b0eda13c031be3a3fe.png

图二

我们先根据题目,可以得到哪些信息,千万不要着急。

正如我图中所写的这样,当x>0的时候,我们是不是能够知道e的x次方恒大于1,因为e的零次方刚刚等于零,但是e的x次方是单调递增的。

然后再慢慢一步步进行推导,得到数列{xn}下有界,这里只是证明了它的有界性,那么我们后面的操作就是要证明该数列的单调性,进而证明该数列是单调有界的。

6abaaf109803f7c2d4b6f5e657a94c67.png

图三

最后给出一个解答方案,由图可知,我们已经证明了该数列的有界性,现在我们要证明它的单调性即可,根据题目给出的条件我们很容易想到用对数的方法来解决,要证明单调性,就是要证明形如xn+1-xn这样的式子恒大于零或者恒小于零,当然,在这道题目中这个式子恒小于零,那么就能够证明该数列是单调递减的,再根据单调有界准则,我们就可以知道该数列收敛,之后再进行求极限就得到a=0。

注意,为什么这个方程两边可以求导,我们可以这样理解,你对方程两边求导,就是对两百年同时除以一个dx,只要dx不等于零,那么方程两边求导后也是相等的,这个一定要注意,因为有很多小伙伴没弄清楚定义域就对方程两边求导,就很容易导致题目做错。

最后做个总结,证明数列是否收敛,以及求该数列的极限的题目的时候,我们要认真分析,用好单调有界准则,用好基本极限的求法,求导也要用好,那么这类题目的难度就不会特别大。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值