施密特正交化_如何一次性找到使实对称矩阵对角化的正交的矩阵

本人在对二次型进行正交相似对角化的时候,发现计算过程中,找到了基础解系之后还需要进行施密特正交化(Gram-Schmidt Orthogonalization)这一看上去很方便的操作,会使计算过程变得复杂,结果也一般比较丑陋。本人找出了另外一种方法,一次性直接找到正交的解。比如说正交下方的矩阵:

,找到正交矩阵
,使得
为对角矩阵
  1. 求特征值,
  2. 先代入特征值
    ,得到方程组
    ,也就是
    =
  3. 方程组秩为1,故解空间是3维的。现在开始找一个正交的基础解系
    ,先找第一个向量,为了方便,不妨直接令
    ,将找到的
    和原方程放在一起,目的是使找到的
    不仅在方程的解空间内,还和
    内积为0.这样的到一个新的方程组
    ,为了方便找到第二个向量,不妨做一些小小的线性变换——阶梯化这个2行的矩阵,目的是得到它的同解矩阵
    ,这样易得第二个向量
    ,这样的
    即在原方程组的解空间内,也与前面的
    正交;
  4. 如法炮制,先组合前面的向量得到3行的矩阵
    ,找这个矩阵的同解阶梯形矩阵得到
    ,立马就可以求得最后一个向量
  5. 整合得到基础解系
    ,下面就只需要单位化了
  6. 单位化,放进矩阵得
    .
  7. 剩下那个
    代进去解得就可以了,他肯定跟前面三个正交的。本文章主要是介绍重根下的相互正交特征向量的求法。最后得到正交矩阵
    =
    ,使得
    。最后这一步记得是把向量竖着放,然后得到了矩阵再右乘在
    旁就可以了,我这里横着放了,转置的放在左边就行了。

本方法的主要方法是一开始求重根下的特征向量时不一次性求完,而是一个一个去求,从而结果会普遍更加可控,也就是说你可以从一开始的

开始就着手让这个过程变得简单(施密特正交化对于结果的形状是有些不可控的)
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值