实对称阵的正交相似对角化

一、正交向量组与正交矩阵

正交向量组的定义a_{1},a_{2},a_{2}...a_{n}是一组非零向量,且两两正交,那么这组向量,则成为正交向量组。

两个向量正交的意思是,两个向量的内积为0,什么是两个向量的内积,就是向量内对应元素的积的和。

a_{1}=\begin{vmatrix} \alpha _{1}\\ \alpha _{2}\\ \alpha _{3}\\ \end{vmatrix} a_{2}=\begin{vmatrix} \beta _{1}\\ \beta _{2}\\ \beta _{3}\\ \end{vmatrix},两个向量的内积为,\alpha _{1}\beta _{1}+\alpha _{2}\beta _{2}+\alpha _{3}\beta _{3}=0

正交单位向量组的定义

一组非零向量是正交向量组,在此基础上,每个向量还是单位向量,则称为正交单位向量组。

什么是单位向量,即该向量的模为1,例如a_{1}=\begin{vmatrix} \alpha _{1}\\ \alpha _{2}\\ \alpha _{3}\\ \end{vmatrix}的模为,\sqrt{\alpha _{1}^{2}+\alpha _{2}^{2}+\alpha _{3}^{2}}

性质:

1、正交向量组必然线性无关

证明:设k_{1}a_{1}+k_{2}a_{2}+...+k_{n}a_{n}=0

如果我们能证这个式子里的k1,k2....kn只能为0的话,那么这几个向量必然是线性无关的

将这个式子左乘以a_{1}^{T},这样结果就是向量之间的内积了

k_{1}a_{1}^{T}a_{1}+k_{2}a_{1}^{T}a_{2}+...+k_{n}a_{1}^{T}a_{n}=0

又因为这个向量组是正交向量组,两两之间的内积都为0

k_{1}a_{1}^{T}a_{1}+0+...+0=0

因为是非零向量,a_{1}^{T}a_{1}这个就是a1的模,不为零,所以k1只能为0,同理,将其他向量的转置左乘这个式子,可以分别求出对应的k为0

所以正交向量组里的向量都是线性无关的。

正交矩阵的定义

若A为n阶方阵,且AA^{T}=A^{T}A=E,则称A为一个正交矩阵

意味着A^{-1}=A^{T},因为矩阵逆的定义是AA^{-1}=A^{-1}A=E

正交矩阵的性质

1、每个行(列)向量都是单位向量

2、任意2个行(列)向量相互正交

3、正交矩阵的行列式为\pm 1

证明:

\left | AA^{T} \right |=\left | A \right |\left | A^{T} \right |=\left | E \right |=1\rightarrow \left | A \right |^{2}=1\rightarrow \left | A \right |=\pm 1

4、如果A是正交矩阵,则A可逆,且A的逆与A的伴随都是正交矩阵

证明:A当然可逆了,A的转置就是A的逆了,A转置必然存在

AA^{T}=A^{T}A=E

A的转置与A互为正交矩阵,都满足正交矩阵的定义

A^{*}(A^{*})^{T}=A^{*}(A^{T})^{*}=(A^{T}A)^{*}=E^{*}=\left | E \right |E^{-1}=E

5、如果A、B都是正交矩阵,那么AB与BA也是正交矩阵

\because AA^{T}=BB^{T}=E

 \therefore AB(AB)^{T}=ABB^{T}A^{T}=E*E=E

\therefore BA(BA)^{T}=BAA^{T}B^{T}=E*E=E

二、实对称矩阵的特征值与特征向量的性质

1、什么是实对称阵?

实对称阵的定义:实对称阵是个方阵,特征值全为实数(普通方阵的特征值有可能为复数),并且是个对称阵,即A=A^{T},实对称阵不同特征值的特征向量之间不但无关,而且相互正交,并且必然可以相似对角化

P^{-1}AP=\Lambda我们称A可以相似对角化

当A是实对称阵的时候,上述等式成立,并且P为一个正交单位矩阵的时候,我们称之为实对称阵的正交相似对角化

P^{-1}AP=\Lambda这个式子我们知道,P是由A的特征向量组成的,\Lambda是A的特征值

那么如何求得P?

因为实对称阵性质的不同特征值下的特征向量必然是线性无关且相互正交的,那么当A的特征值各不相同的情况下,A的特征向量必然相互正交

但是当A有多重特征值的时候,比如有2个相同的特征值,那么对该特征值对应的2个特征向量进行正交化就行。

施密特正交法:将多重特征值下的特征向量正交化

例如将\alpha _{1},\alpha _{2},\alpha _{3}正交化

\beta _{1}=\alpha _{1}

\beta _{2}=\alpha _{2}-\frac{ [\alpha _{1},\beta _{1}]}{[\beta _{1},\beta _{1}]}\beta _{1},括号的意思是求内积

\beta _{3}=\alpha _{3}-\frac{ [\alpha _{3},\beta _{1}]}{[\beta _{1},\beta _{1}]}\beta _{1}-\frac{ [\alpha _{3},\beta _{2}]}{[\beta _{2},\beta _{2}]}\beta _{2}

\beta _{1},\beta _{2},\beta _{3}就是处理过后的正交向量

最后,再对所有的特征向量进行单位化即可(因为我们知道,k倍的特征向量还是特征向量)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rgbhi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值