方阵的施密特正交化与相似对角化

  • 方阵的施密特正交化与相似对角化

施密特正交化

施密特正交化步骤

\begin{matrix} \beta_1=\alpha_1\\ \beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1\\ \cdots\\ \beta_n=alpha_n-\frac{(\alpha_n,\beta_1)}{(\beta_1,\beta_1)}\beta_1-\frac{(\alpha_n,\beta_2)}{(\beta_2,\beta_2)}\beta_2-...-\frac{(\alpha_n,\beta_{n-1})}{(\beta_{n-1}\beta_{n-1})}\beta_{n-1}\\ \gamma_i=\frac{1}{||\beta_i||}\beta_i \end{matrix}

example

相似对角化

相似对角化步骤

A_{n,n}

step1:Eigenvalues[A]:\lambda_1,\lambda_2,...,\lambda_n

step2:Eigenvectors[A]:v_1,v_2,...,v_n

step3:P=[v_1,v_2,...,v_n]

step4:P^{-1}AP=\begin{bmatrix} \lambda_1 & 0 & \cdots & 0\\ 0 & \lambda_2 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}


example

  • 注:特征值的个数与秩无关
A = {{-3, 6}, {-10, 6}};
Eigenvalues[A]
V = Eigenvectors[A];
P = {V[[1]], V[[2]]};
P = Transpose[P];
PI = Inverse[P];
N[Dot[Dot[PI, A], P], 2]

{1/2 (3 + I Sqrt[159]), 1/2 (3 - I Sqrt[159])}

{{1.50000000000000000000000000000000000000000000000000 + 
   6.30476010645924576561431291726655614986405456294770 I, 
  0.*10^-51 + 0.*10^-51 I}, {0.*10^-51 + 0.*10^-51 I, 
  1.50000000000000000000000000000000000000000000000000 - 
   6.30476010645924576561431291726655614986405456294770 I}}

>>> 159**0.5*0.5
6.304760106459246

矩阵的相似与合同

inversible\,matrix\,P\,makes\,P^{-1}AP=B\Rightarrow A\sim B

inversible\,matrix\,P\,makes\,P^{T}AP=B\Rightarrow A\cong B


  • 这两个性质没太多关系
  • 两个实对称矩阵相似的充要条件是两个矩阵有相同的特征根
  • 两个实对称矩阵合同的充要条件是两个矩阵特征根的正根个数和负根个数对应相等
  • 两个相似的实对称矩阵合同

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

River Chandler

谢谢,我会更努力学习工作的!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值