方阵的施密特正交化与相似对角化

  • 方阵的施密特正交化与相似对角化

施密特正交化

施密特正交化步骤

\begin{matrix} \beta_1=\alpha_1\\ \beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1\\ \cdots\\ \beta_n=alpha_n-\frac{(\alpha_n,\beta_1)}{(\beta_1,\beta_1)}\beta_1-\frac{(\alpha_n,\beta_2)}{(\beta_2,\beta_2)}\beta_2-...-\frac{(\alpha_n,\beta_{n-1})}{(\beta_{n-1}\beta_{n-1})}\beta_{n-1}\\ \gamma_i=\frac{1}{||\beta_i||}\beta_i \end{matrix}

example

相似对角化

相似对角化步骤

A_{n,n}

step1:Eigenvalues[A]:\lambda_1,\lambda_2,...,\lambda_n

step2:Eigenvectors[A]:v_1,v_2,...,v_n

step3:P=[v_1,v_2,...,v_n]

step4:P^{-1}AP=\begin{bmatrix} \lambda_1 & 0 & \cdots & 0\\ 0 & \lambda_2 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}


example
  • 注:特征值的个数与秩无关
A = {
  
  {-3, 6}, {-10, 6}};
Eigenvalues[A]
V = Eigenvectors[A];
P = {V[[1]], V[[2]]};
P = Transpose[P];
PI = Inverse[P];
N[Dot[Dot[PI, A], P], 2]

{1/2 (3 + I Sqrt[159]), 1/2 (3 - I Sqrt[159])}

{
  
  {1.50000000000000000000000000000000000000000000000000 + 
   6.30476010645924576561431291726655614986405456294770 I, 
  0.*10^-51 + 0.*10^-51 I}, {0.*10^-51 + 0.*10^-51 I, 
  1.50000000000000000000000000000000000000000000000000 - 
   6.30476010645924576561431291726655614986405456294770 I}}

>>> 159**0.5*0.5
6.304760106459246

矩阵的相似与合同

inversible\,matrix\,P\,makes\,P^{-1}AP=B\Rightarrow A\sim B

inversible\,matrix\,P\,makes\,P^{T}AP=B\Rightarrow A\cong B


  • 这两个性质没太多关系
  • 两个实对称矩阵相似的充要条件是两个矩阵有相同的特征根
  • 两个实对称矩阵合同的充要条件是两个矩阵特征根的正根个数和负根个数对应相等
  • 两个相似的实对称矩阵合同

### 施密特正交化后的操作步骤及应用 #### 正交基的标准化 完成施密特正交化后得到的一组正交向量可以进一步被单位化,形成标准正交基。具体做法是对每一个正交向量除以其自身的范数: \[ \mathbf{u}_i = \frac{\mathbf{v}_i}{\|\mathbf{v}_i\|} \] 其中 $\mathbf{v}_i$ 是通过施密特正交化获得的第 $i$ 个正交向量[^1]。 #### QR分解的应用 利用施密特正交化的结果可以直接构建矩阵的QR分解。设原矩阵为A,则可以通过施密特正交化将其拆解成两个矩阵Q和R的形式: - Q是一个列向量构成的标准正交基组成的方阵; - R是一个上三角形矩阵,其元素表示原始向量投影到相应子空间上的系数。 这种分解方式在求解最小二乘问题、特征值计算等方面有着重要价值[^2]。 ```matlab % 基于MATLAB实现简单的QR分解示例 function [Q, R] = qr_decomposition(A) m = size(A, 1); n = min(size(A)); % 初始化Q,R矩阵 Q = zeros(m,n); R = zeros(n); for j=1:n v = A(:,j); for i=1:j-1 R(i,j) = Q(:,i)' * A(:,j); v = v - R(i,j)*Q(:,i); end R(j,j) = norm(v); if (abs(R(j,j))>eps) Q(:,j)=v/R(j,j); else error('Matrix is rank deficient.'); end; end end ``` #### 应用于信号处理领域 在信号处理方面,经过施密特正交化处理的数据可以帮助消除冗余信息并提高后续分析算法效率。例如,在多通道传感器数据融合过程中,通过对各路输入信号实施此变换可有效降低噪声干扰影响,提升目标检测精度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

River Chandler

谢谢,我会更努力学习工作的!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值