本周张天平学弟在组会上讲了两篇时间序列预测上的最新文章,其中一篇文章用到了 CV 领域非常有意思的一个工作。
原文传送门
N-BEATS(ICLR 2020):Oreshkin, Boris N., et al. "N-BEATS: Neural basis expansion analysis for interpretable time series forecasting." arXiv preprint arXiv:1905.10437 (2019).
Saliency detection(CVPR 2007):Hou, Xiaodi, and Liqing Zhang. "Saliency detection: A spectral residual approach." 2007 IEEE Conference on computer vision and pattern recognition. Ieee, 2007.
Time series anomaly detection(KDD 2019):Ren, Hansheng, et al. "Time-Series Anomaly Detection Service at Microsoft." Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019.
特色
第一篇 paper 是 ICLR 2020 的文章,讲了一个纯深度学习的模型,用来预测时间序列,在竞赛上有较好的结果。同时,具有一定的可解释性。比较有意思的是第二篇文章,通过几行代码就可以识别出来一个图片中最显著的关注点位置,这篇文章是 Xiaodi Hou 在本科的时候做出来的,现在引用已经超过了 3000。第三篇文章是 KDD 2019 的文章,主要用来做时间序列中的异常点检测,用到了第二篇文章的技术。
过程
1、N-BEATS
神经网络结构
神经网络的结构如下,输入的是过去一段时间的数据,预测未来一段时间的数据。模型由若干个 stack 组成,各个 stack 的结果加和起来得到最后的预测结果;每个 stack 又由若干个 block 组成,每个 block 会向前和向后预测,向前预测的结果会加和起来得到最后的结果,向后预测的结果用于和原始信号相减,然后给下一个 block 使用。我的理解是,通过这样的方法可以先预测比较明显的 pa