CNN做时间序列预测_【深度学习 112】时间序列预测

本文探讨了深度学习在时间序列预测中的应用,重点介绍了N-BEATS模型的结构和可解释性,以及Saliency detection在图像显著性检测中的原理。此外,还提到了将Spectral Residual技术应用于时间序列异常检测,通过CNN进行实时判断。
摘要由CSDN通过智能技术生成

2b2ba326c35fb0bca3e1d8f4e5fdbcbc.png

本周张天平学弟在组会上讲了两篇时间序列预测上的最新文章,其中一篇文章用到了 CV 领域非常有意思的一个工作。

原文传送门

N-BEATS(ICLR 2020):Oreshkin, Boris N., et al. "N-BEATS: Neural basis expansion analysis for interpretable time series forecasting." arXiv preprint arXiv:1905.10437 (2019).

Saliency detection(CVPR 2007):Hou, Xiaodi, and Liqing Zhang. "Saliency detection: A spectral residual approach." 2007 IEEE Conference on computer vision and pattern recognition. Ieee, 2007.

Time series anomaly detection(KDD 2019):Ren, Hansheng, et al. "Time-Series Anomaly Detection Service at Microsoft." Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019.

特色

第一篇 paper 是 ICLR 2020 的文章,讲了一个纯深度学习的模型,用来预测时间序列,在竞赛上有较好的结果。同时,具有一定的可解释性。比较有意思的是第二篇文章,通过几行代码就可以识别出来一个图片中最显著的关注点位置,这篇文章是 Xiaodi Hou 在本科的时候做出来的,现在引用已经超过了 3000。第三篇文章是 KDD 2019 的文章,主要用来做时间序列中的异常点检测,用到了第二篇文章的技术。

过程

1、N-BEATS

神经网络结构

神经网络的结构如下,输入的是过去一段时间的数据,预测未来一段时间的数据。模型由若干个 stack 组成,各个 stack 的结果加和起来得到最后的预测结果;每个 stack 又由若干个 block 组成,每个 block 会向前和向后预测,向前预测的结果会加和起来得到最后的结果,向后预测的结果用于和原始信号相减,然后给下一个 block 使用。我的理解是,通过这样的方法可以先预测比较明显的 pa

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值