有关CNN的介绍可以参考以下博文:
三万字硬核详解:卷积神经网络CNN(原理详解 + 项目实战 + 经验分享)_cnn卷积神经网络-CSDN博客
CNN笔记:通俗理解卷积神经网络_cnn卷积神经网络-CSDN博客
尽管 CNN 最初是为图像数据设计的,但它的特性(如局部感受野和权重共享)在捕捉时间序列数据中的局部模式和相邻关系时也非常有效。下面是 CNN 在时间序列分析中的应用详细介绍。
一、 为什么使用 CNN 处理时间序列?
CNN 的特点适合时间序列分析,主要原因有以下几点:
- 局部特征提取:卷积核(filter)能够自动学习局部时间模式,如周期性波动或突变点,适合处理短期依赖的特征。
- 权重共享:在时间序列中,相同的模式可能出现在不同的时间步。权重共享能够帮助 CNN 学习具有一致性的特征,同时减少参数数量。
- 有效的降维:通过池化(Pooling)操作,CNN 可以减少数据量并提取关键特征,帮助防止过拟合,尤其在数据规模有限时。