python求偏度系数_python pandas库和stats库计算偏度和峰度(附程序)

本文介绍了如何使用Python的pandas和scipy.stats库来计算数据的偏度和峰度,包括无偏估计和有偏估计。通过实例展示了如何用公式直接计算,并提供了函数实现偏度和峰度的计算,便于比较不同方法的结果。
摘要由CSDN通过智能技术生成

pandas库

样本方差无偏估计:

\(\frac{1}{n-1}\sum_{i=1}^{n}\left(x_i-\bar{x}\right)^2\)

偏度无偏估计:

\(g_1=\frac{k_3}{k_2^{\frac{3}{2}}}=\frac{n^2}{\left(n-1\right)\left(n-2\right)}\frac{m_3}{s^3}=\frac{n^2}{\left(n-1\right)\left(n-2\right)}\frac{\frac{1}{n}\sum_{i=1}^{n}{(x_i-\overline{x})^3}}{ {\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}{(x_i-\overline{x})^2}}}^3}=\frac{\sqrt{n\left(n-1\right)}}{\left(n-2\right)}\frac{\frac{1}{n}\sum_{i=1}^{n}{(x_i-\overline{x})^3}}{ {\sqrt{\frac{1}{n}\sum_{i=1}^{n}{(x_i-\overline{x})^2}}}^3}\)

峰度无偏估计:

stats库

偏度有偏估计:

\(b_1=\frac{m_3}{s^3}=\frac{\frac{1}{n}\sum_{i=1}^{n}{(x_i-\overline{x})^3}}{ {\sqrt{\frac{1}{n}\sum_{i=1}^{n}{(x_i-\overline{x})^2}}}^3}\)

峰度有偏估计:

\(g_2=\frac{m_4}{m_2^2}-3=\frac{\

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值