pandas库
样本方差无偏估计:
\(\frac{1}{n-1}\sum_{i=1}^{n}\left(x_i-\bar{x}\right)^2\)
偏度无偏估计:
\(g_1=\frac{k_3}{k_2^{\frac{3}{2}}}=\frac{n^2}{\left(n-1\right)\left(n-2\right)}\frac{m_3}{s^3}=\frac{n^2}{\left(n-1\right)\left(n-2\right)}\frac{\frac{1}{n}\sum_{i=1}^{n}{(x_i-\overline{x})^3}}{ {\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}{(x_i-\overline{x})^2}}}^3}=\frac{\sqrt{n\left(n-1\right)}}{\left(n-2\right)}\frac{\frac{1}{n}\sum_{i=1}^{n}{(x_i-\overline{x})^3}}{ {\sqrt{\frac{1}{n}\sum_{i=1}^{n}{(x_i-\overline{x})^2}}}^3}\)
峰度无偏估计:
stats库
偏度有偏估计:
\(b_1=\frac{m_3}{s^3}=\frac{\frac{1}{n}\sum_{i=1}^{n}{(x_i-\overline{x})^3}}{ {\sqrt{\frac{1}{n}\sum_{i=1}^{n}{(x_i-\overline{x})^2}}}^3}\)
峰度有偏估计:
\(g_2=\frac{m_4}{m_2^2}-3=\frac{\