c++ 多重背包状态转移方程_2. 状态空间方程的解 Solution of State-Space Equations

38c46919149143167a8b1694e7ab2062.png

上一节引入了状态空间方程表达式和相对应的标准型。重点的概念是如何把传递函数或者微分方程实现为状态空间方程,以及能控/能观(测)标准型。注意到状态空间的实现是非唯一的,于是我们可以采用线性变换把状态空间表达式进行坐标系变换。至于如何进行坐标系变换和如何从状态空间方程求传递函数或者传递函数阵的问题,都比较基础,涉及的都是线性代数的基本知识,我就不单独花时间写了。建议对线性代数已经有些遗忘的朋友,回顾矩阵对角化(diagonalization),矩阵求逆(matrix inversion),特征值与特征向量(eigenvalue,eigenvector)等概念。在之后的文章中我可能会直接提到它们的公式而不解释来源了。

现代控制理论涉及的矩阵知识非常多,看书学习的时候注意把控主题和数学细节之间的尺度。不要过于深陷数学公式和推导当中,那将是十分无趣的事情,并且其中的很大部分未必对你理解控制有很大帮助。我们的手段是快速回顾重点基础知识,目的是理解和学会使用控制理论中的设计工具与方法

本篇导读

这一篇的内容主要解决了如何对一个连续LTI系统状态空间方程进行求解。线性离散和线性时变,以及非线性系统的求解并不会涉及到。这篇的知识将会在下一个话题:controllability (能控性)observability(能观/能测性)中被用到。与经典控制中的内容相比较,这篇的内容相当于通过Laplace变换来求解描述LTI系统的微分方程,which emphasizes the analysis of solution of LTI system via state-space representation. 这一篇对于LTI系统的求解的方法,可以借助计算机中的软件,如MATLAB快速实现。我们在下一篇中会讲解如何用MATLAB来实现标准型变换,传递函数与状态空间的相互转换,矩阵求逆,LTI系统求解。

本篇目录

  1. LTI系统的自由运动解 Solution of Homogenous State Equation
  2. 状态转移矩阵State-Transition Matrix
  3. 状态转移矩阵的理论计算 Computation of State-Transition Matrix
  4. LTI系统的受迫运动解 Solution of Inhomogeneous State Equation
  5. 本篇小节

1.求解LTI系统的自由运动 Solution of Homogenous State Equation

我们暂时放下传递函数,开始从状态空间的角度来对LTI系统进行分析了。我们之前已经把一个描述LTI系统的微分方程实现为了状态空间方程,

是一个n维向量,我就不把这个
换成粗体了,看着难受,心里清楚就行。这个矩阵微分方程的解就是
的表达式。给定一个状态空间中的初始点
,即初始状态确定。注意这个点在n维空间中由n个坐标描述,有

State-Space Rep. 如下:

已知A,B,C,D的情况下,我们关心这个状态空间方程如何求解。和求解微分方程一样,我们先研究齐次的情况,这对应了 u=0的自由运动情况。考虑到输出方程的取值由状态向量的值决定,我们考虑求解

其解为:

一般的情况,在某一时刻

,有
,其解为:

Remark:证明这个结论我们可以从标量方程

的求解入手。我们显然知道这个方程的解是
。对解的最原始的猜想,通过观察微分方程,可以得到解的形式是关于t的一个power series,即
。通过这种假设我们把解代入矩阵微分方程并让相同次数的项之前的系数相等,match the coefficients ,从而得到:

并根据
的泰勒展开表达式,记

2.状态转移矩阵 State-Transition Matrix

矩阵明显是n维一个方阵,那么
最终也会是一个方阵。在linear algebra中方阵与向量的乘积不改变向量的维度。从上述自由运动的解形式来看,
等同于一个n维方阵对 n维初始向量
不断做线性变换,变换矩阵随着t的变化而改变。我们把
看作是状态空间中的初始状态,记这个变换矩阵为
,称为
状态转移矩阵State-Transition Matrix)。于是上述解变为了:

状态转移矩阵的性质继承了不少幂指数运算的性质,比如重要的幂指数相乘,底数不变,指数相加,就有了比如

这表明了状态从

时刻转移到
时刻,再转移到
时刻,和直接从
时刻转移到
时刻,这两种变换是完全等价的。更多的性质不再展开讨论,无非就是一些数学上的性质,需要推导运算的时候都可以临时去查找,无需花费太多时间去记忆。

在状态转移矩阵的作用下,从初始状态开始,会在状态空间中留下一条轨迹(trajectory),它就是状态空间方程的解。于是trajectory和solution,没有特殊情况,我们以后基本可以认为是一回事。

3. 状态转移矩阵的理论计算 Computation of State-Transition Matrix

一般的教材都提供了几种计算状态转移矩阵的方法。现在罗列如下:

a. 根据定义

去计算。

b. 拉式反变换

c. 应用Cayley–Hamilton theorem 定理计算。

如果真的要笔算这个

,还是用c的结论会比较好。我在这里直接贴一个MIT的链接,你可以参考上面计算方法。
http://web.mit.edu/2.151/www/Handouts/CayleyHamilton.pdf​web.mit.edu

当然在[1][2]中都有提到计算公式,直接往里面套用就行了,没有什么计算难度。

我们感兴趣的是如何用计算机,借助软件工具帮我们完成这个计算。我会在下一篇中演示如何用MATLAB完成这个矩阵的计算。

4.LTI系统的受迫运动解 Solution of Inhomogeneous State Equation

有了前面的基础,我们现在考虑输入不为零的受迫运动解。考虑一般的MIMO系统(多输入多输出系统,Multiple-Input-Multiple-Output System)

当初始时刻为

,初始状态为
,求其解。

两种方法,帮助你理解它的解如何得到。

a. 我们考虑上式的Laplace变换。

我们可以证明

,证明引用初始状态为0的齐次方程的解:

于是得到

, 对比
1中的自由运动解,得证。

那么继续上面受迫运动的求解:

对上式求Laplace逆变换,利用卷积定理有:

于是零初始条件的非齐次状态方程的解得到。

Remark: 注意到这里我们采用laplace的微分性质只能得到初始时刻为0时刻的解。

b. 直接求解

直接对上式化简

可以验证初始时刻t0=0时,与一的结果是一致的。我们给出这个一般结论:

5.本篇小节

这篇的内容为下次讲能控和能观性做了一个铺垫,同时也是线性系统的基础知识。下一篇文章我会介绍用MATLAB来实现很多我们前面提到过的内容,提高我们学习的效率。

Reference

[1] 刘豹 唐万生,现代控制理论,2006, 机械工业出版社

[2] Katsuhiko Ogata, Modern Control Engineering, Fifth Edition, 2010, Pearson

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值