开集识别(Open Set Recognition)

开集识别关注在训练集中未出现的未知类别的处理,旨在解决真实世界中可能出现的新类别问题。传统分类仅考虑已知类别,而开集识别则要求模型在遇到未知类别时能识别为“未知”。OpenMax算法作为解决方案之一,通过调整softmax层,利用极值理论分析距离分布,减少对未知类别的误分类。该方法在深度学习模型中引入开放空间风险的概念,以平衡经验风险和未知类别风险。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

开集识别

闭集识别

​ 训练集中的类别和测试集中的类别是一致的,最常见的就是使用公开数据集进行训练,所有数据集中的图像的类别都是已知的,没有未知种类的图像。传统的机器学习的算法在这些任务上已经取得了比较好的效果。

开集识别简述

​ 现实场景中更多的是开放和非静态的环境,比如,一些没有见过的情况会意外出现。针对这一挑战提出的方法有持续学习、迁移学习、域适应、零样本、少样本学习、开集识别和分类等。

​ 开集识别简单定义是,一个在训练集上训练好的模型,当利用一个测试集(该测试集的中包含训练集中没有的类别)进行测试时,如果输入已知类别数据,输出具体的类别,如果输入的是未知类别的数据,则进行合适的处理(识别为unknown)。

示例 : 猫狗识别模型,输入一张荷花或者大象的图像,模型可能会告诉你80% 的概率为 猫。
想要的结果 : 输入不为猫狗的图像,模型输出为未知类别,输入猫狗图像,模型输出对应具体的类别

数据集类别划分
  • KKCs known known classes

    具有明确标签的正训练样本(对其他KKCs为负样本),包含相应的伴随信息(语义和属性信息等)的类别

  • KUCs known unknown classes

    被标记为负样本,不必要被划分为一个具体的类别,比如background class,universum class(对于一个具体问题不属于任何类别的样本)

  • UKCs unknown known classes

    训练时没有可用的样本,但是有可用的伴随信息(语义和属性信息等)

  • UUCs unknown unknown classes

    训练时没有可用样本,也没有伴随信息(语义和属性信息等)

在这里插入图片描述

传统分类只考虑KKCs;zero-shot learning(ZSL) 关注识别UKCs;one/few-shot看作是ZSL的扩展,训练时有有限数量的UKCs;开集识别(OSR)训练时只有KKCs,测试时有UUCs,需要准确分类KKCs同时需要正确的策略拒绝UUCs。

在这里插入图片描述
下表描述了开集识别和相关任务的区别:

在这里插入图片描述

相关定义
  • 开放空间风险

远离已知数据的空间(包括KKCs和KUCs)通常被认为是开放空间 O,因此将该空间中的任何样本任意标注为KKC必然会带来风险,这被称为开放空间风险(open space risk): R O R_O RO​</

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值