局部直方图均衡
一幅大小为 512x512 的8比特图像,初看有轻微噪声,通过全局直方图均衡后,噪声增强,但并未 显示新的重要细节,使用邻域为 3x3 的矩阵进行局部直方图均衡,可以看到包含在暗色方块中的物体。
过程是定义一个邻域,并把该区域的中心从一个像素移至另一个像素,在每个位置,计算邻域中的点的直方图,并且得到的不是直方图均衡化,就是规定化变换函数。这个函数最终用于映射邻域中心像素的灰度。
在图像增强中使用直方图统计
令 r 表示在区间 $ [ 0, L-1 ] $ 上代表灰度值的一个离散随机变量,并令 p ( r i ) p(r_i) p(ri)表示对应于 r i r_i ri值得归一化直方图分量。
r关于其均值得n阶矩定义为:
μ n ( r ) = ∑ i = 0 L − 1 ( r i − m ) n p ( r i ) μ_n(r) = \sum_{i=0}^{L-1}(r_i-m)^np(r_i) μn(r)=i=0∑L−1(ri−m)np(ri)
其中,m是r得均值(平均灰度,即图像中像素得平均灰度)
m = ∑ i = 0 L − 1 r i p ( r i ) m = \sum_{i=0}^{L-1}r_ip(r_i) m=i=0∑L−1rip(r