数字图像处理笔记(部分一)

本文介绍了数字图像处理中的局部直方图均衡技术,通过3x3邻域矩阵进行处理,改善了全局直方图均衡后的噪声问题。还探讨了图像增强中的直方图统计,包括均值、方差的计算及其在局部增强中的应用。进一步讨论了空间域滤波,如线性与非线性滤波器、平滑滤波、统计排序滤波器(中值滤波器)和锐化滤波器,强调了它们在图像处理中的不同作用和效果。
摘要由CSDN通过智能技术生成

局部直方图均衡

一幅大小为 512x512 的8比特图像,初看有轻微噪声,通过全局直方图均衡后,噪声增强,但并未 显示新的重要细节,使用邻域为 3x3 的矩阵进行局部直方图均衡,可以看到包含在暗色方块中的物体。

过程是定义一个邻域,并把该区域的中心从一个像素移至另一个像素,在每个位置,计算邻域中的点的直方图,并且得到的不是直方图均衡化,就是规定化变换函数。这个函数最终用于映射邻域中心像素的灰度。

在图像增强中使用直方图统计

令 r 表示在区间 $ [ 0, L-1 ] $ 上代表灰度值的一个离散随机变量,并令 p ( r i ) p(r_i) p(ri)表示对应于 r i r_i ri值得归一化直方图分量。

r关于其均值得n阶矩定义为:
μ n ( r ) = ∑ i = 0 L − 1 ( r i − m ) n p ( r i ) μ_n(r) = \sum_{i=0}^{L-1}(r_i-m)^np(r_i) μn(r)=i=0L1(rim)np(ri)
其中,m是r得均值(平均灰度,即图像中像素得平均灰度)
m = ∑ i = 0 L − 1 r i p ( r i ) m = \sum_{i=0}^{L-1}r_ip(r_i) m=i=0L1rip(r

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值