问题描述
- 求一个序列的最大子段和即最大连续子序列之和。例如序列[4, -3, 5, -2, -1, 2, 6, -2]的最大子段和为11=[4+(-3)+5+(-2)+(-1)+(2)+(6)]。
1. 蛮力算法
- 思想:从序列首元素开始穷举所有可能的子序列。
- 代码示例(C++):
#include<iostream>
using namespace std;
int MaxSubsequenceSum(const int array[], int n)
{
int tempSum, maxSum;
maxSum = 0;
for (int i = 0;i < n;i++) // 子序列起始位置
{
for (int j = i;j < n;j++) // 子序列终止位置
{
tempSum = 0;
for (int k = i;k < j;k++) // 子序列遍历求和
tempSum += array[k];
if (tempSum > maxSum) // 更新最大和值
maxSum = tempSum;
}
}
return maxSum;
}
int main()
{
const int a[] = { 4, -3, 5, -2, -1, 2, 6, -2 };
int maxSubSum = MaxSubsequenceSum(a, 8);
cout << "The max subsequence sum of a is: " << maxSubSum << endl;
system("pause");
return 0;
}
- 算法复杂度为 O(n3) O ( n 3 )
2. 改进的蛮力算法
- 思想:直接在划定子序列时累加元素值,减少一层循环。
- 代码示例(C++):
#include<iostream>
using namespace std;
int MaxSubsequenceSum(const int array[],int n)
{
int tempSum, maxSum;
maxSum = 0;
for (int i = 0;i < n;i++)
{
tempSum = 0;
for (int j = i;j < n;j++)
{
tempSum += array[j];
if (tempSum > maxSum)
maxSum = tempSum;
}
}
return maxSum;
}
int main()
{
const int a[] = { 4, -3, 5, -2, -1, 2, 6, -2 };
int maxSubSum = MaxSubsequenceSum(a, 8);
cout << "The max subsequence sum of a is: " << maxSubSum << endl;
system("pause");
return 0;
}
- 算法复杂度为 O(n2) O ( n 2 )
3. 分治递归的算法
- 思想:将序列划分为左右两部分,则最大子段和可能在三处出现:左半部、右半部以及跨越左右边界的部分。递归的终止条件是:left == right。
- 代码示例:
#include<iostream>
using namespace std;
int max3(int a, int b, int c) // 求三个数的最大值
{
int max = a;
if (b > max)
max = b;
if (c > max)
max = c;
return max;
}
int MaxSubsequenceSum(const int array[], int left, int right)
{
if (left == right) // 设置基准,即递归终止条件
return array[left];
int middle = (left + right) / 2;
int leftMaxSubsequenceSum = MaxSubsequenceSum(array, left, middle); // 求左半部分最大子序列和
int rightMaxSubsquenceSum = MaxSubsequenceSum(array, middle + 1, right); // 求右半部分最大子序列和
// 处理左右边界问题:最大子序列跨越中间,包含左半部分最右一个数,同时包含右半部分最左一个数
int maxLeftBorderSum = 0;
int maxRightBorderSum = 0;
int tempSum = 0; // 临时求和变量
for (int i = middle;i >= left;i--)
{
tempSum += array[i];
if (tempSum > maxLeftBorderSum)
maxLeftBorderSum = tempSum; // 左边包含边界最大序列和
}
tempSum = 0;
for (int i = middle + 1;i < right;i++)
{
tempSum += array[i];
if (tempSum > maxRightBorderSum)
maxRightBorderSum = tempSum; // 右边包含边界最大序列和
}
int maxBorderSum = maxRightBorderSum + maxLeftBorderSum; // 最大边界子序列和等于两部分边界之和
return max3(leftMaxSubsquenceSum, maxBorderSum, rightMaxSubsquenceSum); // 返回三个部分的最大子序列和
}
int main()
{
const int a[] = { 4, -3, 5, -2, -1, 2, 6, -2 };
int maxSubSum = MaxSubsequenceSum(a, 0, 7);
cout << "The max subsequence sum of a is: " << maxSubSum << endl;
system("pause");
return 0;
}
算法复杂度分析:假设求解 N N 个元素序列的最大子问题的时间复杂度为