机器学习-KNN(K近邻算法)

K近邻算法(K-Nearest Neighbor)是一种很基本的机器学习方法,能做分类和回归任务(寻找最近的K个邻居(欧式距离))

KNN的三个基本要素:距离度量、k值的选择和决策规则

  1. 距离度量
    • 在引例中所画的坐标系,可以叫做特征空间。特征空间中两个实例点的距离是两个实例点相似程度的反应(距离越近,相似度越高)。kNN模型使用的距离一般是欧氏距离,但也可以是其他距离如:曼哈顿距离
  2. k值的选择
    • k值的选择会对kNN模型的结果产生重大影响。选择较大的k值,相当于用较大邻域中的训练实例进行预测,模型会考虑过多的邻近点实例点,甚至会考虑到大量已经对预测结果没有影响的实例点,会让预测出错;选择较小的k值,相当于用较小邻域中的训练实例进行预测,会使模型变得敏感(如果邻近的实例点恰巧是噪声,预测就会出错)。
    • 在应用中,k值一般取一个比较小的数值。通常采用一些验证方法来选取最优的k值。
  3. 决策规则
    • 分类:往往是多数表决,即由输入实例的k个邻近的训练实例中的多数类决定待测实例的类。或带权投票
    • 回归:取平均值。或带权取平均值
K值的选择

k是一个超参数,需要使用验证集来调参
k过小:容易受到噪声点影响
k过大:会考虑到一些对预测没有价值的数据点

带权平均数(广义线性平均值)
带权平均数

训练KNN模型需要做特征标准化

sklearn对KNN的实现方法
  • 蛮力法(brute-force)
    • k近邻法最简单的实现方式是线性扫描,需要计算待测实例与每个实例的距离,在大数据上不可行。
  • KD树(KDTree)
    • 为了提高k近邻搜索效率,考虑使用特殊的结构存储训练数据,以减少计算距离的次数,可以使用kd树(kd tree)方法。kd树分为两个过程——构造kd树(使用特殊结构存储训练集)、搜索kd树(减少搜索计算量)
  • 球树(BallTree)
构造kd树

• 给定一个二维空间的数据集(含有标记的一般叫训练集,不含标记的一般叫数据集): ,请画出:特征空间的划分过程、kd树的构造过程。
• 第一步:选择x(1)轴,6个数据点的x(1)坐标上的数字分别是2,5,9,4,8,7。取中位数7(不是严格意义的中位数,取较大的数),以x(1)=7将特征空间分为两个矩形:
在这里插入图片描述

• 第二步:选择x(2)轴,处理左子树,3个数据点的x(2)坐标上的数字分别是3,4,7。取中位数4,以x(2)=4将左子树对应的特征空间分为两个矩形;处理右子树,2个数据点的x(2)坐标上的数字分别是6,1。取6,以x(2)=6将右子树对应的特征空间分为两个矩形:

在这里插入图片描述
• 第三步:x(1)轴,分别处理所有待处理的节点:

在这里插入图片描述

搜索KD树

在这里插入图片描述

KDTree的作用

KDTree是将数据以一种特殊的树形结构组织起来,加快K近邻的搜索效率(如果特征空间上某一个父区域与超球体不想交,则放弃那个父区域所有点的计算)

构造kd树KNN优缺点
  • 优点
    思想简单,能做分类和回归
    惰性学习,无需训练(蛮力法),KD树的话,则需要建树
    对异常点不敏感
  • 缺点
    计算量大、速度慢
    样本不平衡的时候,对稀有类别的预测准确率低
    KD树,球树之类的模型建立需要大量的内存
    相比决策树模型,KNN模型可解释性不强
关于距离度量

闵可夫斯基距离
闵可夫斯基距离
曼哈顿距离
曼哈顿距离
欧氏距离
欧氏距离
切比雪夫距离
切比雪夫距离
距离度量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值