超详细|最全的AIGC检测平台对比

大家都是学生党,做这个测评的目的,是希望可以对比一下市面上常用的aigc检测平台,在初次检测的时候,可以根据自己的需要找合适的平台。总结成下表,同一段文字,知网和维普检测率基本一致,PaperPass识别出来一半,万方识别出四分之一,所以如果学校要求是知网,可以根据字数,选择适当的平台进行检测。

平台

aigc检测率

价格

知网

99.67%

2元/千字

万方

27.21%

2元/千字

维普

100%

24元/篇

PaperPass

49.21%

1.5元/千字

下面是各种查重检测平台,可根据需要选择适当的查重平台

论文查重​http://aigcjc-paper.taoxiangyoushu.com

一、价格

1.知网

一般学校要求使用知网aigc查重。价格在2元/千字。一般本科论文1.5w字=30元。硕士论文4w字=80元。

2.万方

价格2元/千字。一般本科论文1.5w字=30元。硕士论文4w字=80元

3.维普

一篇24元

4.PaperPass

分免费版和收费版,免费版每天5篇,收费版1.5元/千字。一篇本科25,硕士大概60。

论文查重http://​aigcjc-paper.taoxiangyoushu.com

### AIGC检测在信息技术领域的作用 AIGC(Artificial Intelligence Generated Content)检测技术旨在识别由人工智能生成的内容,这在信息技术领域能够有效防止虚假信息传播并保护识产权。随着AI技术的发展,自动生成文本、图像其他形式内容的能力显著增强,因此开发可靠的AIGC检测工具变得至关重要。 对于AIGC检测而言,主要挑战在于区分自然人类创作的作品与机器产生的作品之间的细微差别。为了应对这一难题,研究者们提出了多种方法技术框架来提高检测精度: - **特征工程**:通过提取特定类型的统计特性或模式作为输入变量用于分类器训练过程。 - **深度神经络模型**:利用预训练的语言模型或其他架构来进行端到端的学习,在此过程中自动捕捉潜在的数据表示[^1]。 此外,域适应(domain adaptation)也是实现高效AIGC检测的关键因素之一。由于不同应用场景下的数据分布可能存在差异,迁移学习策略可以帮助改善跨环境泛化性能,从而使得基于源域(Source Domain)上获得的识能够更好地应用于目标域(Target Domain)[^1]。 ```python import torch from transformers import BertTokenizer, BertForSequenceClassification tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForSequenceClassification.from_pretrained('bert-base-uncased') def detect_aigc(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) outputs = model(**inputs) predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) return predictions.detach().numpy() text_example = "This article discusses the importance of renewable energy sources." print(detect_aigc(text_example)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值