Multi-modal Multi-label Emotion Detection with Modality and Label
Dependence
多模态多标签情感分析
论文引用地址:https://www.aclweb.org/anthology/2020.emnlp-main.291
EMNLP 2020
概要
提出了一种多模态seq2set(MMS2S)方法,同时对模态和标签依赖进行建模
步骤
- 采用了三种基于Transfomer的单模态编码器来捕捉文本、视觉和声学模式的单模态特性
- 给定的情感表示处理来自情感解码器内部编码器的三个模态内序列,并利用Multi-head soft modality attention控制不同模式对每个潜在情感预测的不同贡献
- 通过最大化顶级K序列的概率来训练模型,并通过找到最有可能的情绪标签集来预测所有潜在的情绪标签
数据预处理
- GloVe单词嵌入用于表示来自手工转录本的单词。 然后,我们得到文本序列
- Facet1用于提取一组视觉特征,包括面部动作单元、面部地标、头部姿势、凝视跟