多模态多标签情感分析

Multi-modal Multi-label Emotion Detection with Modality and Label
Dependence

多模态多标签情感分析

论文引用地址:https://www.aclweb.org/anthology/2020.emnlp-main.291
EMNLP 2020

概要在这里插入图片描述

提出了一种多模态seq2set(MMS2S)方法,同时对模态和标签依赖进行建模

步骤

  1. 采用了三种基于Transfomer的单模态编码器来捕捉文本、视觉和声学模式的单模态特性
  2. 给定的情感表示处理来自情感解码器内部编码器的三个模态内序列,并利用Multi-head soft modality attention控制不同模式对每个潜在情感预测的不同贡献
  3. 通过最大化顶级K序列的概率来训练模型,并通过找到最有可能的情绪标签集来预测所有潜在的情绪标签

数据预处理

  1. GloVe单词嵌入用于表示来自手工转录本的单词。 然后,我们得到文本序列
  2. Facet1用于提取一组视觉特征,包括面部动作单元、面部地标、头部姿势、凝视跟
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值