传统DNN网络的输入是原始特征,维度过大,因此论文提出将特征进行类别归属,这样可以极大减少数据量由百万级别的类别变到f*k级别的参数
缺陷
1:采用FM初始化参数无法实现端对端的任务
2:将高阶特征concat放入MLP中,无法精确表达低阶特征
FNN(Factorization-machine supported Neural Networks)简介
最新推荐文章于 2023-11-23 09:28:01 发布
传统DNN网络的输入是原始特征,维度过大,因此论文提出将特征进行类别归属,这样可以极大减少数据量由百万级别的类别变到f*k级别的参数
缺陷
1:采用FM初始化参数无法实现端对端的任务
2:将高阶特征concat放入MLP中,无法精确表达低阶特征