FNN(Factorization-machine supported Neural Networks)简介

传统DNN网络的输入是原始特征,维度过大,因此论文提出将特征进行类别归属,这样可以极大减少数据量由百万级别的类别变到f*k级别的参数
在这里插入图片描述
缺陷
1:采用FM初始化参数无法实现端对端的任务
2:将高阶特征concat放入MLP中,无法精确表达低阶特征

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值