仿射相关与线性相关

本文探讨了线性组合与仿射组合的区别,其中线性组合是向量的标量加权求和,而仿射组合要求权重之和为1。线性相关指的是任意向量无法由其他向量的线性组合唯一表示,线性独立则相反。仿射相关与仿射独立类似,但考虑的是是否存在一个向量能通过其他向量的仿射组合得到。最后,文章指出,如果v2-v1, v3-v1,..., vn-v1线性独立,则v1, v2,..., vn仿射独立,反之亦然。" 124690062,13789588,Python基础:控制语句与函数解析,"['Python编程', '编程基础', '函数用法']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.目录

线性组合与仿射组合

给定n个向量 v1,v2...vn ,其线性组合为 i=1naivi ,其中, a1,a2,a3...ai 是标量。
仿射组合是线性组合的一种,只是要求组合系数之和为1。
v1,v2...vn 的仿射组合是 i=1naivi ,当且仅当 i=1nai=1

线性相关与线性独立

通俗来讲,对于一组向量,如果其中任一向量都不能被其他向量线性组合而成则称线性无关或者线性独立。

从数学上来说:给定n个向量如下

v1,v2...vn

如果存在n个不全为0的标量 a1,a2,a3...an 使得:

a1v1+a2v2+...+anvn=0

v1,v2...vn 线性相关,否则称 v1,v2...vn 线性独立。

仿射相关与仿射独立

通俗来讲,对于一组向量,如果其中任一向量都不能被其他向量仿射组合而成则称仿射无关或者线性独立。
回忆我们的仿射组合的定义,如果存在一个向量 vi 能其他n-1个向量仿射组合而成,则这n个向量仿射相关。
给定n个向量如下 v1,v2...vn
如果存在n个不全为0的标量 a1,a2,a3...an 使得:

a1v1+a2v2+...+anvn=0

a1+a2+...+an=0

则称 v1,v2...vn 仿射相关,否则称 v1,v2...vn 仿射独立。
下面我们将这个数学定义推到成仿射组合的形式:
假设其中 ai0 ,则 aivi=jinajvj
由于 a1+a2+...+an=0 所以 ai=a1+a2,ai1,ai+1...+an
所以 vi=jinbjvj ,其中 bj=ajjiaj
注意这里 jibj=1 vi 是由其他n-1个向量仿射组合而成。

联系

如果 v2v1,v3v1,v4v1...,vnv1 线性独立,则 v1,v2...vn 仿射独立,反之亦然。
反证法如下:
假设 v1,v2...vn 仿射相关。
a1v1a1v1+a2v2a2v1+...a1v1+anvnanv1=j=1najv1=0=a1v1+a2v2+...+anvn
j=2naj(vjv1)=0
v2v1,v3v1,v4v1...,vnv1 线性相关与已知条件矛盾,故成立,证毕。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值