下载论文或阅读原文,请点击:每日论文
摘要
中文
密集对比表示学习(DCRL)显著提高了图像密集预测任务的学习效率,展现出其在减少医疗图像收集和密集标注的巨大潜力。然而,医学图像的性质使得对应发现不可靠,给DCRL带来了大规模的假阳性(FP)和假阴性(N)对的开题问题。在本文中,我们提出了嵌入到DCRL中的同胚先验的GEoMetric vIsual deNse sImilarity(GEMINI)学习,它能够实现可靠的对应发现以进行有效的密集对比。我们提出了可变形同胚学习(DHL),它对医学图像的同胚进行建模,并学习估计一个可变形映射来预测在拓扑保持下的像素对应关系。这有效地减少了配对搜索空间,并通过梯度驱动负对的隐式和软学习。我们还提出了几何语义相似度(GSS),它从特征中提取语义信息来衡量对应学习的对齐程度。这将促进变形的学习效率和性能,可靠地构建正对。在我们的实验中,我们实现了两个在实际应用中的变体,在七个数据集上的有希望的结果,优于现有方法,显示出我们的巨大优势。我们将通过一个伴随链接发布我们的代码:https://github.com/YutingHe-list/GEMINI。
English
Dense contrastive representation learning (DCRL) has greatly improved the learning effic