DHGNN:Dynamic Hypergraph Neural Networks

在这里插入图片描述代码:https://github.com/iMoonLab/DHGNN

动机

超图/图的边是固有的,所以这个很大的限制了点之间的隐含关系。文章提出了动态超图神经网络DHGNN,用于解决这种问题。其分成两个阶段:动态超图重建(DHG)以及动态图卷积(HGC)。DHG用于每一层动态更新超图结构(这里的每一层很关键,因为Dynamic hypergraph structure learning (DHSL) [Zhanget al., 2018] 已经是初始的时候进行动态的),HGC使用顶点卷积和边卷积,用于汇集点和边的信息。

贡献

  • 提出动态图构建方法,先用k-NN方法产生基础的超边,再用K-means对节点进行聚类,生成扩充的边。这么做就可以提取到局部和整体的关系。
  • 我们进行了基于网络的分类和社交媒体情绪预测实验。在基于网络的任务中,我们的方法优于现有的方法,对不同的数据分布具有较高的鲁棒性。在社交媒体情绪预测方面,我们方法优于最先进的方法(SOTA)

DHNN

DHC(动态超图construction)

  • X = [ x 1 , x 2 , . . . , x n ] X=[x_1,x_2,...,x_n] X=[x1,x2,...,xn]为特征嵌入, x i x_i xi表示第i 个样本的特征。我们需要通过这些点来建立超图 V \mathcal{V} V
  • G = { V , E } \mathcal{G}=\{\mathcal{V,E}\} G={V,E}, V \mathcal{V} V表示顶点集, E \mathcal{E} E表示超边集( e ∈ E e\in \mathcal{E} eE为一连接动态数量顶点的超边)

在这里插入图片描述
算法解釋:第1 步对嵌入特征进行K-means聚类,通过迭代可以生成给定的K个类
第2步到11步是生成基础边和extend边的过程。
3.对每个嵌入特征u 进行k-nn聚类,这里是挑选出于u最近的k个embeding作连成一条超边 e b e_b eb
4.将 e b e_b eb视为u 的超边所连接的点,u 并入到 e b e_b eb
至此,basic edge 构建完毕,下面是利用k-mean的k 个类对u增加具有全局意义的边
5、6.计算u到每个聚类值中心的距离并对距离进行从小到大排序
7. 挑选出前S-1个聚类中心。这些中心都是离u 比较近的
8、9.将选好的离u近的中心加入到u的超边集里边

整个过程在卷积的每一层进行,就可以使得每次都是动态的embedding图。而且可以获得更加高次(high-order)的关系,加深网络层数。

超图卷积

节点卷积

节点卷积将边上所连接的节点的信息都汇集到边上,(简单做法:平均池化,最大池化),SOTA做法是直接用一个固定的,从图结构里提前计算好的转移矩阵进行处理,但是这种方法无法很好地对顶点特征间的描述信息进行建模,所以这里由节点特征来生成转移矩阵,即
T = M L P ( X u ) T=MLP(X_u) T=MLP(Xu)
转移之后我们再使用单通道的卷积层将特征变成一维,
x e = c o n v ( T ⋅ M L P ( X u ) ) \mathbf{x}_e=conv(T \cdot MLP(X_u ) ) xe=conv(TMLP(Xu))
整个流程为
在这里插入图片描述

超边卷积

边卷积将上面获得的每条边的特征表示,汇集到中心节点处,这里还使用了MLP来产生注意力系数,加到每个边的特征上进行加权求和,最后得到节点表示 X u X_u Xu
w = s o l f m a x ( x e W + b ) w=solfmax(\mathbf{x}_eW+b) w=solfmax(xeW+b) x u = ∑ i = 0 ∣ A d j ( u ) ∣ w i x e i \mathbf{x}_u=\sum^{|Adj(u)|}_{i=0}w^i\mathbf{x}_e^i xu=i=0Adj(u)wixei
在这里插入图片描述在这里插入图片描述

实验

Cora dataset

使用不同的数据划分得到的结果
std 是5.2%固定trainset
而后面的5.2%是通过随机采样的(以下结果都是10次实验的平均)
在这里插入图片描述

Microblog

为了生成视觉特征,我们使用了SentiBank [Borth et al., 2013],
一种ANP检测器库对Twitter图像进行预训练,将微博图像转化为1553维特征向量。对于表情符号,我们构建了一个包含49个常用表情符号的表情符号字典,并计算了大量的表情符号特征。每条微博都有一个标签,表明其情感丰富程度(积极或消极)。其任务是通过多变量来预测推文的情感极性
在这里插入图片描述

  • 1
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
### 回答1: 超图神经网络是一种新兴的神经网络模型,它可以处理高维、非线性、非欧几里德空间的数据。与传统的图神经网络不同,超图神经网络可以处理多个节点之间的高阶关系,这些关系可以是任意形式的子集。超图神经网络已经在图像识别、自然语言处理、推荐系统等领域取得了很好的效果。 ### 回答2: 超图神经网络hypergraph neural networks)是一种新兴的神经网络模型,它在传统的图神经网络Graph Neural Networks, GNNs)的基础上进行了扩展和改进。超图神经网络是一种可以处理超图数据的神经网络,这种网络可以在节点和超边之间建立联系,从而更好地处理超边特征。 在传统图神经网络中,节点之间通过边进行联系,而在超图神经网络中,节点和超边之间建立直接联系,从而可以更好地处理超边和超级节点。超图神经网络可以处理包含多种类型节点和多个类型的边的复杂网络,这些网络在实际应用中非常常见。 使用超图神经网络进行任务处理的过程通常包括两个步骤:超图结构学习和节点/边特征学习。超图结构学习包括超图建模和标准化;节点/边特征学习包括节点表示学习和边表示学习。超图神经网络已经被应用于许多领域,例如计算机视觉、自然语言处理、社交网络分析等。 在超图神经网络的发展过程中,一些问题仍需要解决。例如,如何选择合适的超边和节点特征工程方法来提取重要的信息并处理噪声?如何处理超图中的异构信息,如节点类型和超边类型之间的关系?未来研究将在这些方面展开,以改进超图神经网络的性能和适应性。 ### 回答3: 超图神经网络hypergraph neural networks)是最近发展起来的一种新型神经网络模型,其应用范围已经逐渐拓展到图像处理、自然语言处理、社交网络分析等领域。 跟传统的图神经网络不同,超图神经网络不仅考虑节点之间的关系,还考虑边的组合方式,即超边(hyperedge)的存在。一个hyperedge可以由多个节点组成,同时每个节点可以属于多个hyperedge。超图神经网络的主要特点在于它可以学习到不同节点之间的高阶关系,通过hyperedge的方式更好地描述现实场景中的物理现象,比如物质间的相互作用、语句中的语义关系等。 尽管超图神经网络的应用具有很高的潜力,但是还是存在着一些挑战。比如如何设计高效的超图构建算法和相应的优化算法,如何解决超图的信息传递问题,以及如何根据不同任务的特性对超图神经网络进行适当的结构设计和超参数选择。 总之,超图神经网络是一种重要的神经网络模型,能够有效地处理现实场景中存在的高阶关系,对于实际应用中的图像处理、自然语言处理、社交网络分析等领域具有广泛的应用前景。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值