论文链接:https://arxiv.org/pdf/2010.13902.pdf
附录链接:https://yyou1996.github.io/files/neurips2020_graphcl_supplement.pdf
代码链接:https://github.com/Shen-Lab/GraphCL
1 图的数据增强
我们专注于图级扩充。给定 M 个图的数据集中的图 G ∈ { : m ∈ M },我们制定扩充图 G 满足:
,其中 q(·|G) 是扩充分布预定义的原始图,代表数据分布的人类先验。例如对于图像分类,旋转和裁剪的应用编码先验,人们将从旋转图像或其局部补丁中获得相同的基于分类的语义知识 [49, 50]
在图表方面,可以遵循同样的想法。 1 是图形数据集是从不同领域抽象出来的,因此可能没有像图像数据集那样普遍适用的数据增强。换句话说,对于不同类别的图形数据集,某些数据扩充可能比其他数据扩充更受欢迎。我们主要关注三类:生化分子(例如化合物、蛋白质)[9]、社交网络[1]和图像超像素图[12]。接下来,我们为图结构数据提出了四种通用数据增强,并讨论了它们引入的直观先验。
节点丢弃
给定图 G,节点丢弃将随机丢弃

文章提出了一种图对比学习框架GraphCL,用于图神经网络的自监督预训练。该框架包括图数据增强(如节点丢弃、边缘扰动、属性掩码和子图采样),基于GNN的编码器,投影头和对比损失函数。通过最大化同一图的不同增强视图之间的表示一致性,GraphCL可以提升模型在图结构数据上的表现。此外,文章还探讨了GraphCL与互信息最大化的关联,并与其他对比学习方法进行了比较。
最低0.47元/天 解锁文章
454

被折叠的 条评论
为什么被折叠?



