GoogLeNet已经接受了超过一百万张图像的培训,可以将图像分为1000个对象类别(如键盘,咖啡杯,铅笔和许多动物)。 该网络已经为各种图像学习了丰富的特征表示。 网络将图像作为输入,然后输出图像中对象的标签以及每个对象类别的概率。迁移学习通常用于深度学习应用程序,可以使用预训练网络并将其作为学习新任务的起点。
下载GoogLeNet toolbox
在命令窗口输入 “googlenet”进入页面下载,如已经安装会出现以下字样:
ans =
DAGNetwork - 属性:
Layers: [144×1 nnet.cnn.layer.Layer]
Connections: [170×2 table]
如何想要对GoogLeNet有深入的了解,可以在电脑的matla安装路径下找到对应的toolbox的文件夹。例如:matlab2018\toolbox\nnet\cnn
利用迁移学习对GoogLeNet进行更改,下面是mathwork官网上的例子,可以进行参考。
%% 加载数据
% 解压缩并将新图像作为图像数据存储加载。这个非常小的数据集只包含75个图像。 将数据划分为训练和验证数据集