本文参考《The Complex LMS Algorithm》论文
作者: BERNARD WIDROW, JOHN McCOOL, AND MICHAEL BALL
关键词: LMS;复数空间。
1、原理
;普通的实数永远只会在自己的维度里面,把实数域扩增到复数域,一维上升到二维(类似于一维向量和二维向量)。从高维度看低维度的事情,反而能够看得更清楚,更透彻。将一维实数域对应的线性为问题拓展到复数域。对自适应算法来说,普通的线性LMS算法也就演变成了复数域上的LMS算法。
2、具体实现步骤
线性空间 | 非线性空间(增加复数域) |
---|---|
推导过程如下:
1):由于误差的两个分量(实部和虚部)是相互正交的,因此它们不能独立地最小化
2):求瞬时梯度
对权向量的实部 | 对权向量的虚部 |
---|---|
实部递推公式 | 虚部递推公式 |
(求导细节:互为共轭的两个向量里面都有实向量,需要使用分布求导法则)
3)整合
由以下公式可得:
推出: