华为被嘲

今天无意间在 Github 看到华为开源项目 huaweicloud-sdk-php-obs 中的最新 issue。

差点被当场笑死。

华为被嘲,这是我见过比 sleep(6) 更狠的吐槽_面试

翻看历史,早在 2021 年的时候,就有 issue 指出「为什么朋友圈都在笑代码写得烂?」

至今该 issue 还处于 Open 状态,没有回应。

里面的评论也十分讽刺。

华为被嘲,这是我见过比 sleep(6) 更狠的吐槽_前端_02

这不禁让人联想到两个月前,华为在发布会展示大模型文生图能力时,演示过程中被网友抓拍到的 time.sleep(6)

华为被嘲,这是我见过比 sleep(6) 更狠的吐槽_后端_03

之后很长一段时间,这都被程序员作为一个"优化梗"玩坏了:

华为被嘲,这是我见过比 sleep(6) 更狠的吐槽_面试_04

真的,自那以后我就发现,程序员是最不惯着华为的群体。

即使华为后面在 5 月 16 日进行了澄清,这事情在程序员圈也没有停止发酵。

一堆新词被发明了出来,什么确定性延迟我进 OD 为的就是 sleep() 这块技术的段子都是在那个时候被发明出来的 🤣🤣

...

回归主题。

来一道和「阿里」相关的算法题。

题目描述

平台:LeetCode

题号:1877

一个数对 (a,b) 的数对和等于 a + b

最大数对和是一个数对数组中最大的数对和。

比方说,如果我们有数对 (1,5) ,(2,3) 和 (4,4),最大数对和 为 max(1+5, 2+3, 4+4) = max(6, 5, 8) = 8

给你一个长度为偶数 n 的数组 nums,请你将 nums 中的元素分成 n / 2 个数对,使得:

  • nums 中每个元素恰好在一个数对中
  • 且最大数对和的值最小

请你在最优数对划分的方案下,返回最小的最大数对和。

示例 1:

输入:nums = [3,5,2,3]

输出:7

解释:数组中的元素可以分为数对 (3,3) 和 (5,2) 。
最大数对和为 max(3+3, 5+2) = max(6, 7) = 7 。
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.

示例 2:

输入:nums = [3,5,4,2,4,6]

输出:8

解释:数组中的元素可以分为数对 (3,5),(4,4) 和 (6,2) 。
最大数对和为 max(3+5, 4+4, 6+2) = max(8, 8, 8) = 8 。
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.

提示:

  • 华为被嘲,这是我见过比 sleep(6) 更狠的吐槽_后端_05
  • 华为被嘲,这是我见过比 sleep(6) 更狠的吐槽_数组_06
  • n 是偶数
  • 华为被嘲,这是我见过比 sleep(6) 更狠的吐槽_非对称_07

基本分析 & 证明

直觉上,我们会认为尽量让“较小数”和“较大数”组成数对,可以有效避免出现“较大数成对”的现象

我们来证明一下该猜想是否成立。

假定 nums 本身有序,由于我们要将 nums 拆分成 n / 2 个数对,根据猜想,我们得到的数对序列为:

华为被嘲,这是我见过比 sleep(6) 更狠的吐槽_面试_08

换句话说,构成答案的数对必然是较小数取自有序序列的左边,较大数取自有序序列的右边,且与数组中心对称

假设最大数对是 华为被嘲,这是我见过比 sleep(6) 更狠的吐槽_非对称_09,其中 华为被嘲,这是我见过比 sleep(6) 更狠的吐槽_非对称_10,记两者之和为 华为被嘲,这是我见过比 sleep(6) 更狠的吐槽_数组_11

反证法证明,不存在别的数对组合会比 华为被嘲,这是我见过比 sleep(6) 更狠的吐槽_非对称_09

假设存在数对 华为被嘲,这是我见过比 sleep(6) 更狠的吐槽_前端_13华为被嘲,这是我见过比 sleep(6) 更狠的吐槽_非对称_09

华为被嘲,这是我见过比 sleep(6) 更狠的吐槽_前端_15

接下来分情况讨论:

  • 调整为 华为被嘲,这是我见过比 sleep(6) 更狠的吐槽_前端_16华为被嘲,这是我见过比 sleep(6) 更狠的吐槽_面试_17:此时最大数对答案为 华为被嘲,这是我见过比 sleep(6) 更狠的吐槽_数组_18,显然 华为被嘲,这是我见过比 sleep(6) 更狠的吐槽_数组_19。我们要最小化最大数对和,因此该调整方案不会让答案更好;
  • 调整为 华为被嘲,这是我见过比 sleep(6) 更狠的吐槽_面试_20华为被嘲,这是我见过比 sleep(6) 更狠的吐槽_非对称_21:此时最大数对答案为 华为被嘲,这是我见过比 sleep(6) 更狠的吐槽_数组_22。我们要最小化最大数对和,因此该调整方案不会让答案更好;

上述分析可以归纳推理到每一个“非对称”的数对配对中。

至此我们得证,将原本对称的数对调整为不对称的数对,不会使得答案更优,即贪心解可取得最优解。

贪心

对原数组 nums 进行排序,然后从一头一尾开始往中间组「数对」,取所有数对中的最大值即是答案。

Java 代码:

class Solution {
    public int minPairSum(int[] nums) {
        Arrays.sort(nums);
        int n = nums.length;
        int ans = nums[0] + nums[n - 1];
        for (int i = 0, j = n - 1; i < j; i++, j--) {
            ans = Math.max(ans, nums[i] + nums[j]);
        }
        return ans;
    }
}
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.

C++ 代码:

class Solution {
public:
    int minPairSum(vector<int>& nums) {
        sort(nums.begin(), nums.end());
        int n = nums.size();
        int ans = nums[0] + nums[n - 1];
        for (int i = 0, j = n - 1; i < j; i++, j--) {
            ans = max(ans, nums[i] + nums[j]);
        }
        return ans;
    }
};
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.

Python 代码:

class Solution:
    def minPairSum(self, nums: List[int]) -> int:
        nums.sort()
        n = len(nums)
        ans = nums[0] + nums[n - 1]
        i, j = 0, n - 1
        while i < j:
            ans = max(ans, nums[i] + nums[j])
            i, j = i + 1, j - 1
        return ans
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.

TypeScript 代码:

function minPairSum(nums: number[]): number {
    nums.sort((a, b) => a - b);
    let n = nums.length;
    let ans = nums[0] + nums[n - 1];
    for (let i = 0, j = n - 1; i < j; i++, j--) {
        ans = Math.max(ans, nums[i] + nums[j]);
    }
    return ans;
};
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 时间复杂度:华为被嘲,这是我见过比 sleep(6) 更狠的吐槽_面试_23
  • 空间复杂度:华为被嘲,这是我见过比 sleep(6) 更狠的吐槽_数组_24

答疑

关于「证明」部分,不少小伙伴有一些疑问,觉得挺有代表性的,特意加到题解内。

Q1. 「证明」部分是不是缺少了“非对称”得最优的情况?

A1. 并没有,证明的基本思路如下:

  1. 猜想对称组数对的方式,会得到最优解;
  2. 证明非对称数组不会被对称数对方式更优。

然后我们证明了“非对称方式”不会比“对称方式”更优,因此“对称方式”可以取得最优解。

至于非对称和非对称之间怎么调整,会更优还是更差,我不关心,也不需要证明,因为已经证明了非对称不会比对称更优。

Q2. 证明部分的图 pq 是在 ij 内部,那么其他 pqij 大小关系的情况呢?

A2. 有这个疑问,说明没有重点理解「证明」中的加粗部分(原话):

上述分析可以归纳推理到每一个“非对称”的数对配对中。

也就是说,上述的分析是可以推广到每一步都成立的,包括第一步,当 i 为排序数组的第一位原始,j 为排序数组中最后一位时,任意 pq 都是在 ij 内部的。

因此,「证明」对边界情况成立,同时对任意不成“对称”关系的数对也成立(其实也就是「证明」部分中的原话)。

更大白话一点是:对于任意“非对称”的数对组合,将其调整为“对称”数对组合,结果不会变差。