机器学习防止过拟合---正则化

机器学习中,过拟合是一件比较头疼的事情,明明模型在训练样本上表现的很好,但在测试样本上却表现的较差,泛化能力不好。比如强大的神经网络就常常被过拟合问题困扰。
为了避免过拟合,最常用的一种方法是使用正则化,L1正则化和L2正则化可以看做是损失函数的惩罚项,就是对损失函数中的某些参数做一些限制。比如对于线性回归模型,使用L1正则化的模型叫做Lasso回归,使用L2正则化的模型叫做岭回归。
以下对L1正则(L1范数) 和 L2 正则(L2范数)进行总结:

一. L2正则化

L2 正则化就是在原来损失函数的基础上加上权重参数的平方和,具体公式如下
L = L i + λ ∑ j ω j 2 L = L_{i} + \lambda \sum _{j}\omega _{j}^{2} L=Li+λjωj2

其中,前一项是不包含正则化项的损失函数,λ 是正则化系数,此值可调。

正则化就是限制参数过多,从而避免模型过于复杂。比如一个5阶多项式,模型可能会比较容易发生过拟合,因此为了防止过拟合,最容易想到的方法就是限制 w 的个数,但这个方法不容易实现,我们就考虑加一个限定条件:
∑ j ω j 2 ≤ C \sum _{j}\omega _{j}^{2}\leq C jωj2C
这样我们的目标就转换为:在约束条件( ω \omega ω 的平方和小于 C )下求最小化损失函数 L i L_{i} Li

二. L1 正则化

L1 正则化就是在原来损失函数的基础上加上权重参数的绝对值,具体公式如下:
L = L i + λ ∑ j ∣ ω j ∣ L = L_{i} + \lambda \sum _{j}\left | \omega _{j} \right | L=Li+λjωj
限定条件为:
∑ j ∣ ω j ∣ ⩽ C \sum _{j}\left | \omega _{j} \right |\leqslant C jωjC
这样我们的目标就转换为:在约束条件( ω \omega ω的绝对值和小于 C )下求最小化损失函数 L i L_{i} Li

三. L1正则化和L2正则化

L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择,一定程度上,L1也可以防止过拟合。

稀疏矩阵指的是很多元素为0,只有少数元素是非零值的矩阵,通常机器学习中特征数量比较多,在预测或分类时,那么多特征难以选择,但是如果代入这些特征得到的模型是一个稀疏模型,表示只有少数特征对这个模型有贡献,绝大部分特征是没有贡献的,此时我们就可以只关注系数是非零值的特征。

L2正则化可以防止模型过拟合。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值