在2*N的一个长方形方格中,用一个1*2的骨牌排满方格。
问有多少种不同的排列方法。
例如:2 * 3的方格,共有3种不同的排法。(由于方案的数量巨大,只输出 Mod 10^9 + 7 的结果)
Input
输入N(N <= 1000)
Output
输出数量 Mod 10^9 + 7
Input示例
3
Output示例
3
这是一个典型的递推计算题。这个类型的题目都是两种选择,如这题就是要么竖着放要么横着放。
f(0) = 0,没有地方摆骨牌;
f(1) = 1,只能竖着摆放1个骨牌=1;
f(2) = 2,横着摆放2个骨牌+竖着摆放2个骨牌=2;
f(n) = f(n-2) + f(n-1),n>2,可以在f(n-2)的基础上在右边再横着放2个骨牌+在f(n-1)的基础上在右边再竖着1个骨牌。这是他的两种选择,在右边剩余的情况下的选择。
原创代码:
#include<stdio.h>
int mod=1e9+7;
int f(int n)
{
if(n==0)
return 0;
else if(n==1)
return 1;
else if(n==2)
return 2;
else
{
int f1=1;
int f2=2;
for(int i=3;i<=n;i++)
{
int ans=(f1+f2)%mod;
f1=f2;
f2=ans;
}
return f2;
}
}
int main()
{
int n;
scanf("%d",&n);
printf("%d\n",f(n));
return 0;
}