文章目录
前言
该博客介绍了如何使用子载波预留技术来降低OFDM系统的PAPR。通过在频域选择并预留部分子载波,可以有效地减少信号峰值,防止非线性功率放大器的失真。同时,文档详细介绍了利用迫近映射,对无穷范数 L ∞ L_\infty L∞求极值的凸优化问题。
一、引言
正交频分复用(OFDM)技术已经成为现代告诉无线通信中最常用的技术之一,是5G时代最重要的信号调制方式。它利用了时频正交的特性,能够应对多径衰落、频率漂移和干扰等问题。虽然OFDM技术在提高通信速率方面非常有效,但是它的信号峰均比(PAPR)偏大,在信号经过功放时,容易使功放进入饱和状态、从而导致信号失真。因此,如何降低信号的峰均比PAPR是OFDM技术中一个很重要的问题。降PAPR算法有很多,这里只介绍子载波预留算法(Tone Reservation, TR)。
二、子载波预留算法
1.算法思想
对于 K K K个子载波的OFDM信号 S ( k ) S(k) S(k),其中 k ∈ [ 0 , K − 1 ] k \in \left[ {0,K - 1} \right] k∈[0,K−1],经过IFFT之后得到时域信号: s ( n ) = 1 N ⋅ ∑ k = 0 K − 1 S ( k ) ⋅ e j 2 π ⋅ k n N , n ∈ [ 0 , N − 1 ] s(n){\rm{ }} = \frac{1}{N}\cdot\sum\limits_{k = 0}^{K - 1} {S(k)} \cdot {{\operatorname{e}}^{j2\pi \cdot \frac{kn}{N}}},n \in [0,N - 1] s(n)=N1⋅k=0∑K−1S(k)⋅ej2π⋅Nkn,n∈[0,N−1],当不同子载波之间的相关性比较高时,时域很有可能出现比平均功率大得多的信号,这也是OFDM信号峰均比较高的原因。而子载波预留算法利用原本 K K K个子载波之外的若干额外子载波资源,来抵消原本 K K K个子载波之间的相关性,从而降低时域峰值信号功率。
2.算法原理
频域预留个 L L L子载波用于降低时域信号PAPR,预留子载波序列为 C ( l ) , l ∈ [ 0 , L − 1 ] C\left( l \right),l \in [0,L - 1] C(l),l∈[0,L−1],转换到时域为 c ( n ) , n ∈ [ 0 , N − 1 ] c(n),n \in [0,N - 1] c(n),n∈[0,N−1]。那么此时峰均比为:
P A P R [ s ( n ) + c ( n ) ] = m a x ( [ s ( n ) + c ( n ) ] 2 ) E ( [ s ( n ) + c ( n ) ] 2 ) (1) {\rm{PAPR}}\left[ {s(n){\rm{ }} + c\left( {\rm{n}} \right)} \right] = \frac{{{\rm{max}}\left( {{{\left[ {s(n){\rm{ }} + c\left( {\rm{n}} \right)} \right]}^2}} \right)}}{{E\left( {{{\left[ {s(n){\rm{ }} + c\left( {\rm{n}} \right)} \right]}^2}} \right)}}\tag{1} PAPR[s(n)+c(n)]=E([s(n)+c(n)]2)max([s(n)+c(n)]2)(1)
当子载波数目较大且预留子载波个数远小于
K
K
K时,分母
E
(
[
s
(
n
)
+
c
(
n
)
]
2
)
E\left( {{{\left[ {s\left( {\rm{n}} \right) + c\left( {\rm{n}} \right)} \right]}^2}} \right)
E([s(n)+c(n)]2)的期望接近
E
(
x
(
n
)
2
)
E\left( {x{{\left( {\rm{n}} \right)}^2}} \right)
E(x(n)2)且是个常数。因此,为了使OFDM信号
s
(
n
)
+
c
(
n
)
s\left( {\rm{n}} \right) + c\left( {\rm{n}} \right)
s(n)+c(n)的PAPR最低,即设计满足如下优化问题的向量:
c
^
=
a
r
g
m
i
n
c
(
∥
s
+
c
∥
∞
2
)
=
F
⋅
a
r
g
m
i
n
C
∥
s
+
F
C
∥
∞
(2)
{\bf{\hat c}} = \mathop {{\rm{argmin}}}\limits_{\bf{c}} \left( {\left\| {{\bf{s + c}}} \right\|_\infty ^2} \right) = {\bf{F}} \cdot \mathop {{\rm{argmin}}}\limits_{\bf{C}} \left\| {{\bf{s}} + {\bf{FC}}} \right\|_\infty ^{}\tag{2}
c^=cargmin(∥s+c∥∞2)=F⋅Cargmin∥s+FC∥∞(2)
式中,
F
{\bf{F}}
F为DFT矩阵,
∥
⋅
∥
∞
\left\| \cdot \right\|_\infty ^{}
∥⋅∥∞为无穷范数,取向量幅度的最大值。
正常到这里,对于OFDM信号降PAPR的子载波预留TR算法就讲完了。而在实际应用时,(2)式的优化问题是一个非平滑的凸优化问题,往往伴随着巨大的运算量,实时性很难保证,因此问题的关键在于如何快速求解出(2)式非平滑凸优化问题。这是一个典型的无穷范数
L
∞
L_\infty
L∞求极值的凸优化问题,这里介绍一种算法:AD-LPMM,该算法是交替方向乘子法(ADMM)的一种特殊形式,有兴趣的可以查找相关资料。
3.子载波预留算法的AD-LPMM算法
式 (2) 是一个无约束非平滑凸优化问题,可将 (2) 式问题转化为如下形式:
x
^
,
z
^
=
a
r
g
m
i
n
x
,
z
H
(
x
,
z
)
≡
h
1
(
x
)
+
h
2
(
z
)
s
.
t
.
A
x
+
B
z
=
d
(3)
\begin{array}{c} {\bf{\hat x,\hat z}} = \mathop {{\rm{argmin}}}\limits_{{\bf{x,z}}} H({\bf{x,z}}) \equiv {h_1}({\bf{x}}) + {h_2}({\bf{z}})\\ s.t.{\rm{ }}{\bf{Ax}} + {\bf{Bz}} = {\bf{d}} \end{array}\tag{3}
x^,z^=x,zargminH(x,z)≡h1(x)+h2(z)s.t.Ax+Bz=d(3)
式中,
h
1
(
x
)
=
0
,
h
2
(
z
)
=
∥
z
∥
∞
,
A
=
F
,
B
=
−
I
,
d
=
−
s
,
x
=
C
,
z
=
s
+
F
C
{h_1}(x) = 0,{h_2}(z) = {\left\| z \right\|_\infty },{\bf{A = F}},{\bf{B}} = - {\bf{I}},{\bf{d}} = - {\bf{s}},{\bf{x}} = {\bf{C}},{\bf{z}} = {\bf{s + FC}}
h1(x)=0,h2(z)=∥z∥∞,A=F,B=−I,d=−s,x=C,z=s+FC。(3)式问题可用AD-LPMM算法求解:
AD-LPMM
Initialization:
x
0
∈
C
L
,
z
0
∈
C
N
,
y
0
∈
C
N
,
ρ
>
0
,
α
≥
ρ
λ
max
(
A
H
A
)
,
β
≥
ρ
λ
max
(
B
H
B
)
{{\mathbf{x}}^{\mathbf{0}}}\in {{\mathbb{C}}^{L}},{{\mathbf{z}}^{\mathbf{0}}}\in {{\mathbb{C}}^{N}},{{y}^{\mathbf{0}}}\in {{\mathbb{C}}^{N}},\rho >0,\alpha \ge \rho {{\lambda }_{\max }}\left( {{\mathbf{A}}^{H}}\mathbf{A} \right),\beta \ge \rho {{\lambda }_{\max }}\left( {{\mathbf{B}}^{H}}\mathbf{B} \right)
x0∈CL,z0∈CN,y0∈CN,ρ>0,α≥ρλmax(AHA),β≥ρλmax(BHB).
General step: for any k = 0,1,…execute the following:
(
a
)
x
k
+
1
=
p
r
o
x
1
α
h
1
[
x
k
−
ρ
α
A
H
(
A
x
k
+
B
z
k
−
c
+
1
ρ
y
k
)
]
(
b
)
z
k
+
1
=
p
r
o
x
1
β
h
2
[
z
k
−
ρ
β
B
H
(
A
x
k
+
1
+
B
z
k
−
c
+
1
ρ
y
k
)
]
(
c
)
y
k
+
1
=
y
k
+
ρ
(
A
x
k
+
1
+
B
z
k
+
1
−
c
)
(4)
\begin{array}{l} (a){\rm{ }}{{\bf{x}}^{k + 1}} = {\rm{pro}}{{\rm{x}}_{\frac{1}{\alpha }{h_1}}}\left[ {{{\bf{x}}^k} - \frac{\rho }{\alpha }{{\bf{A}}^H}\left( {{\bf{A}}{{\bf{x}}^k} + {\bf{B}}{{\bf{z}}^k} - {\bf{c}} + \frac{1}{\rho }{{\bf{y}}^k}} \right)} \right]\\ (b){\rm{ }}{{\bf{z}}^{k + 1}} = {\rm{pro}}{{\rm{x}}_{\frac{1}{\beta }{h_2}}}\left[ {{{\bf{z}}^k} - \frac{\rho }{\beta }{{\bf{B}}^H}\left( {{\bf{A}}{{\bf{x}}^{k + 1}} + {\bf{B}}{{\bf{z}}^k} - {\bf{c}} + \frac{1}{\rho }{{\bf{y}}^k}} \right)} \right]\\ (c){\rm{ }}{{\bf{y}}^{k + 1}} = {{\bf{y}}^k} + \rho \left( {{\bf{A}}{{\bf{x}}^{k + 1}} + {\bf{B}}{{\bf{z}}^{k + 1}} - {\bf{c}}} \right) \end{array}\tag{4}
(a)xk+1=proxα1h1[xk−αρAH(Axk+Bzk−c+ρ1yk)](b)zk+1=proxβ1h2[zk−βρBH(Axk+1+Bzk−c+ρ1yk)](c)yk+1=yk+ρ(Axk+1+Bzk+1−c)(4)
上式中,
p
r
o
x
⋅
[
⋅
]
{\rm{pro}}{{\rm{x}}_ \cdot }\left[ \cdot \right]
prox⋅[⋅]表示迫近映射,详细可以参考维基百科。
3.1 h 1 ( x ) {{h}_{1}}(x) h1(x)的迫近映射:
因为 h 1 ( x ) = 0 {{h}_{1}}(x)=0 h1(x)=0,所以: pro x 1 α h 1 ( x ) = x \text{pro}{{\text{x}}_{\frac{1}{\alpha }{{h}_{1}}}}\left( \mathbf{x} \right)=\mathbf{x} proxα1h1(x)=x.
3.2 h 2 ( x ) {{h}_{2}}(x) h2(x)的迫近映射:
根据Moreau分解,
1
β
h
2
(
x
)
\frac{1}{\beta }{{h}_{2}}\left( \mathbf{x} \right)
β1h2(x)的迫近映射可以表示为:
p
r
o
x
1
β
∥
⋅
∥
∞
(
x
)
=
x
−
1
β
p
r
o
x
β
∥
⋅
∥
∞
∗
(
β
x
)
=
x
−
1
β
p
r
o
x
∥
⋅
∥
∞
∗
(
β
x
)
=
x
−
1
β
p
r
o
j
∥
⋅
∥
1
≤
1
(
β
x
)
\begin{array}{c} {\rm{pro}}{{\rm{x}}_{\frac{1}{\beta }{{\left\| \cdot \right\|}_\infty }}}\left( {\bf{x}} \right) = {\bf{x}} - \frac{1}{\beta }{\rm{pro}}{{\rm{x}}_{\beta \left\| \cdot \right\|_\infty ^*}}\left( {\beta {\bf{x}}} \right)\\ = {\bf{x}} - \frac{1}{\beta }{\rm{pro}}{{\rm{x}}_{\left\| \cdot \right\|_\infty ^*}}\left( {\beta {\bf{x}}} \right)\\ = {\bf{x}} - \frac{1}{\beta }{\rm{pro}}{{\rm{j}}_{{{\left\| \cdot \right\|}_1} \le 1}}\left( {\beta {\bf{x}}} \right) \end{array}
proxβ1∥⋅∥∞(x)=x−β1proxβ∥⋅∥∞∗(βx)=x−β1prox∥⋅∥∞∗(βx)=x−β1proj∥⋅∥1≤1(βx)
上式中
∥
⋅
∥
∞
∗
=
δ
∥
⋅
∥
1
≤
1
(
z
)
\left\| \cdot \right\|_\infty ^* = {\delta _{{{\left\| \cdot \right\|}_1} \le 1}}\left( {\bf{z}} \right)
∥⋅∥∞∗=δ∥⋅∥1≤1(z)是
∥
⋅
∥
∞
{\left\| \cdot \right\|_\infty }
∥⋅∥∞的对偶函数 (是一个指示函数),当
∥
⋅
∥
1
≤
1
{\left\| \cdot \right\|_1} \le 1
∥⋅∥1≤1时函数输出0,否则函数输出为
∞
\infty
∞。上式中第二个等号成立是因为
β
∥
⋅
∥
∞
∗
=
∥
⋅
∥
∞
∗
\beta \left\| \cdot \right\|_\infty ^* = \left\| \cdot \right\|_\infty ^*
β∥⋅∥∞∗=∥⋅∥∞∗,第三个等号成立是因为指示函数
δ
∥
⋅
∥
1
≤
1
(
z
)
{\delta _{{{\left\| \cdot \right\|}_1} \le 1}}\left( {\bf{z}} \right)
δ∥⋅∥1≤1(z)的迫近映射与投影到集合
∥
⋅
∥
1
≤
1
{\left\| \cdot \right\|_1} \le 1
∥⋅∥1≤1等价。
p
r
o
j
∥
⋅
∥
1
≤
1
(
β
x
)
{\rm{pro}}{{\rm{j}}_{{{\left\| \cdot \right\|}_1} \le 1}}\left( {\beta {\bf{x}}} \right)
proj∥⋅∥1≤1(βx)可进一步简化,令
z
=
β
u
{\bf{z}} = \beta {\bf{u}}
z=βu:
p
r
o
j
∥
⋅
∥
1
≤
1
(
β
x
)
=
arg
min
∥
z
∥
1
≤
1
1
2
∥
z
−
β
x
∥
2
=
β
⋅
arg
min
∥
β
u
∥
1
≤
1
1
2
∥
β
u
−
β
x
∥
2
=
β
⋅
arg
min
∥
u
∥
1
≤
1
β
1
2
∥
β
u
−
β
x
∥
2
=
β
⋅
arg
min
∥
u
∥
1
≤
1
β
1
2
∥
u
−
x
∥
2
=
β
⋅
p
r
o
j
∥
⋅
∥
1
≤
1
β
(
x
)
\begin{array}{c} {\rm{pro}}{{\rm{j}}_{{{\left\| \cdot \right\|}_1} \le 1}}\left( {\beta {\bf{x}}} \right) = \mathop {\arg \min }\limits_{{{\left\| {\bf{z}} \right\|}_1} \le 1} \frac{1}{2}{\left\| {{\bf{z}} - \beta {\bf{x}}} \right\|^2}\\ = \beta \cdot \mathop {\arg \min }\limits_{{{\left\| {\beta {\bf{u}}} \right\|}_1} \le 1} \frac{1}{2}{\left\| {\beta {\bf{u}} - \beta {\bf{x}}} \right\|^2}\\ = \beta \cdot \mathop {\arg \min }\limits_{{{\left\| {\bf{u}} \right\|}_1} \le \frac{1}{\beta }} \frac{1}{2}{\left\| {\beta {\bf{u}} - \beta {\bf{x}}} \right\|^2}\\ = \beta \cdot \mathop {\arg \min }\limits_{{{\left\| {\bf{u}} \right\|}_1} \le \frac{1}{\beta }} \frac{1}{2}{\left\| {{\bf{u}} - {\bf{x}}} \right\|^2}\\ = \beta \cdot {\rm{pro}}{{\rm{j}}_{{{\left\| \cdot \right\|}_1} \le \frac{1}{\beta }}}\left( {\bf{x}} \right) \end{array}
proj∥⋅∥1≤1(βx)=∥z∥1≤1argmin21∥z−βx∥2=β⋅∥βu∥1≤1argmin21∥βu−βx∥2=β⋅∥u∥1≤β1argmin21∥βu−βx∥2=β⋅∥u∥1≤β1argmin21∥u−x∥2=β⋅proj∥⋅∥1≤β1(x)
上式中第二个等号成立是因为
z
=
β
u
{\bf{z}} = \beta {\bf{u}}
z=βu变换后,相当于对
z
{\bf{z}}
z进行了
β
\beta
β倍的压缩,因此第一行的最小化问题与第二行的等价;倒数第二行的等号成立是因为优化指标乘以一个非0的系数之后,不改变原优化问题。而投影
p
r
o
j
∥
⋅
∥
1
≤
1
β
(
x
)
{\rm{pro}}{{\rm{j}}_{{{\left\| \cdot \right\|}_1} \le \frac{1}{\beta }}}\left( {\bf{x}} \right)
proj∥⋅∥1≤β1(x):
pro
j
∥
⋅
∥
1
≤
1
β
(
x
)
=
{
x
,
i
f
∥
x
∥
1
≤
1
β
s
g
n
(
x
)
⋅
max
{
∣
x
∣
−
α
x
,
0
}
,
e
l
s
e
\text{pro}{{\text{j}}_{{{\left\| \cdot \right\|}_{1}}\le \frac{1}{\beta }}}\left( \mathbf{x} \right)=\left\{ \begin{matrix} \mathbf{x}\text{, }if{{\left\| \mathbf{x} \right\|}_{1}}\le \frac{1}{\beta } \\ sgn \left( \mathbf{x} \right)\cdot \max \left\{ \left| \mathbf{x} \right|-{{\alpha }_{x}},0 \right\}\text{, }else \\ \end{matrix} \right.
proj∥⋅∥1≤β1(x)={x, if∥x∥1≤β1sgn(x)⋅max{∣x∣−αx,0}, else
式中
s
g
n
(
⋅
)
sgn \left( \cdot \right)
sgn(⋅)表示取数据的正负号,
α
x
{{\alpha }_{x}}
αx是
∥
s
g
n
(
x
)
⋅
max
{
∣
x
∣
−
α
,
0
}
∥
1
=
1
β
{{\left\| sgn \left( \mathbf{x} \right)\cdot \max \left\{ \left| \mathbf{x} \right|-\alpha ,0 \right\} \right\|}_{1}}=\frac{1}{\beta }
∥sgn(x)⋅max{∣x∣−α,0}∥1=β1的正数解,可以利用二分法进行查找。综上:
pro
x
1
β
∥
⋅
∥
∞
(
x
)
=
{
0
,
i
f
∥
x
∥
1
≤
1
β
x
−
s
g
n
(
x
)
⋅
max
{
∣
x
∣
−
α
x
,
0
}
,
e
l
s
e
\text{pro}{{\text{x}}_{\frac{1}{\beta }{{\left\| \cdot \right\|}_{\infty }}}}\left( \mathbf{x} \right)=\left\{ \begin{matrix} 0\text{ ,}if{{\left\| \mathbf{x} \right\|}_{1}}\le \frac{1}{\beta } \\ \mathbf{x}-sgn \left( \mathbf{x} \right)\cdot \max \left\{ \left| \mathbf{x} \right|-{{\alpha }_{x}},0 \right\}\text{ ,}else\text{ } \\ \end{matrix} \right.
proxβ1∥⋅∥∞(x)={0 ,if∥x∥1≤β1x−sgn(x)⋅max{∣x∣−αx,0} ,else
通过以上的变换之后,关于式(4)的求解问题就只剩下简单的向量和矩阵操作,实际操作中可以根据所需精度和实时性要求调整AD-LPMM算法的参数
ρ
\rho
ρ,
α
\alpha
α,
β
\beta
β以及迭代次数。
4.仿真结果
子载波数
K
=
624
K = 624
K=624,额外预留子载波数
L
=
48
L = 48
L=48,时域采样点数
N
=
1024
N = 1024
N=1024,
ρ
=
0.25
\rho=0.25
ρ=0.25,
α
=
2.44
×
1
0
−
4
\alpha = 2.44 \times {10^{ - 4}}
α=2.44×10−4,
β
=
0.25
\beta = 0.25
β=0.25,调制方式为QPSK。图(1)是原始OFDM信号和脉冲整形PS-OFDM的信号时域幅度图。
总结
以上就是OFDM信号降PAPR算法的TR算法原理以及相关AD-LPMM算法求解的详细过程。其中对于迫近映射需要一定基础才能看懂,强烈推荐查阅相关资料。后续也打算出一篇迫近映射的相关介绍,敬请期待。对于同样需要额外子载波的脉冲整形方法可参考这篇脉冲整形PS算法
本文作者: 渺小的颗星
本文链接: https://blog.csdn.net/weixin_40319158/article/details/147983522?sharetype=blogdetail&sharerId=147983522&sharerefer=PC&sharesource=weixin_40319158&spm=1011.2480.3001.8118
版权声明: 转载请注明出处!
参考:
https://blog.csdn.net/2301_78484069/article/details/131670981