OFDM信号降峰均比(PAPR)的子载波预留算法及ADMM求解方法


前言

该博客介绍了如何使用子载波预留技术来降低OFDM系统的PAPR。通过在频域选择并预留部分子载波,可以有效地减少信号峰值,防止非线性功率放大器的失真。同时,文档详细介绍了利用迫近映射,对无穷范数 L ∞ L_\infty L求极值的凸优化问题。


一、引言

正交频分复用(OFDM)技术已经成为现代告诉无线通信中最常用的技术之一,是5G时代最重要的信号调制方式。它利用了时频正交的特性,能够应对多径衰落、频率漂移和干扰等问题。虽然OFDM技术在提高通信速率方面非常有效,但是它的信号峰均比(PAPR)偏大,在信号经过功放时,容易使功放进入饱和状态、从而导致信号失真。因此,如何降低信号的峰均比PAPR是OFDM技术中一个很重要的问题。降PAPR算法有很多,这里只介绍子载波预留算法(Tone Reservation, TR)。

二、子载波预留算法

1.算法思想

对于 K K K个子载波的OFDM信号 S ( k ) S(k) S(k),其中 k ∈ [ 0 , K − 1 ] k \in \left[ {0,K - 1} \right] k[0,K1],经过IFFT之后得到时域信号: s ( n ) = 1 N ⋅ ∑ k = 0 K − 1 S ( k ) ⋅ e ⁡ j 2 π ⋅ k n N , n ∈ [ 0 , N − 1 ] s(n){\rm{ }} = \frac{1}{N}\cdot\sum\limits_{k = 0}^{K - 1} {S(k)} \cdot {{\operatorname{e}}^{j2\pi \cdot \frac{kn}{N}}},n \in [0,N - 1] s(n)=N1k=0K1S(k)ej2πNkn,n[0,N1],当不同子载波之间的相关性比较高时,时域很有可能出现比平均功率大得多的信号,这也是OFDM信号峰均比较高的原因。而子载波预留算法利用原本 K K K个子载波之外的若干额外子载波资源,来抵消原本 K K K个子载波之间的相关性,从而降低时域峰值信号功率。

2.算法原理

频域预留个 L L L子载波用于降低时域信号PAPR,预留子载波序列为 C ( l ) , l ∈ [ 0 , L − 1 ] C\left( l \right),l \in [0,L - 1] C(l),l[0,L1],转换到时域为 c ( n ) , n ∈ [ 0 , N − 1 ] c(n),n \in [0,N - 1] c(n),n[0,N1]。那么此时峰均比为:

P A P R [ s ( n ) + c ( n ) ] = m a x ( [ s ( n ) + c ( n ) ] 2 ) E ( [ s ( n ) + c ( n ) ] 2 ) (1) {\rm{PAPR}}\left[ {s(n){\rm{ }} + c\left( {\rm{n}} \right)} \right] = \frac{{{\rm{max}}\left( {{{\left[ {s(n){\rm{ }} + c\left( {\rm{n}} \right)} \right]}^2}} \right)}}{{E\left( {{{\left[ {s(n){\rm{ }} + c\left( {\rm{n}} \right)} \right]}^2}} \right)}}\tag{1} PAPR[s(n)+c(n)]=E([s(n)+c(n)]2)max([s(n)+c(n)]2)(1)

当子载波数目较大且预留子载波个数远小于 K K K时,分母 E ( [ s ( n ) + c ( n ) ] 2 ) E\left( {{{\left[ {s\left( {\rm{n}} \right) + c\left( {\rm{n}} \right)} \right]}^2}} \right) E([s(n)+c(n)]2)的期望接近 E ( x ( n ) 2 ) E\left( {x{{\left( {\rm{n}} \right)}^2}} \right) E(x(n)2)且是个常数。因此,为了使OFDM信号 s ( n ) + c ( n ) s\left( {\rm{n}} \right) + c\left( {\rm{n}} \right) s(n)+c(n)的PAPR最低,即设计满足如下优化问题的向量:
c ^ = a r g m i n c ( ∥ s + c ∥ ∞ 2 ) = F ⋅ a r g m i n C ∥ s + F C ∥ ∞ (2) {\bf{\hat c}} = \mathop {{\rm{argmin}}}\limits_{\bf{c}} \left( {\left\| {{\bf{s + c}}} \right\|_\infty ^2} \right) = {\bf{F}} \cdot \mathop {{\rm{argmin}}}\limits_{\bf{C}} \left\| {{\bf{s}} + {\bf{FC}}} \right\|_\infty ^{}\tag{2} c^=cargmin(s+c2)=FCargmins+FC(2)
式中, F {\bf{F}} F为DFT矩阵, ∥ ⋅ ∥ ∞ \left\| \cdot \right\|_\infty ^{} 为无穷范数,取向量幅度的最大值。
正常到这里,对于OFDM信号降PAPR的子载波预留TR算法就讲完了。而在实际应用时,(2)式的优化问题是一个非平滑的凸优化问题,往往伴随着巨大的运算量,实时性很难保证,因此问题的关键在于如何快速求解出(2)式非平滑凸优化问题。这是一个典型的无穷范数 L ∞ L_\infty L求极值的凸优化问题,这里介绍一种算法:AD-LPMM,该算法是交替方向乘子法(ADMM)的一种特殊形式,有兴趣的可以查找相关资料。

3.子载波预留算法的AD-LPMM算法

式 (2) 是一个无约束非平滑凸优化问题,可将 (2) 式问题转化为如下形式:
x ^ , z ^ = a r g m i n x , z H ( x , z ) ≡ h 1 ( x ) + h 2 ( z ) s . t . A x + B z = d (3) \begin{array}{c} {\bf{\hat x,\hat z}} = \mathop {{\rm{argmin}}}\limits_{{\bf{x,z}}} H({\bf{x,z}}) \equiv {h_1}({\bf{x}}) + {h_2}({\bf{z}})\\ s.t.{\rm{ }}{\bf{Ax}} + {\bf{Bz}} = {\bf{d}} \end{array}\tag{3} x^,z^=x,zargminH(x,z)h1(x)+h2(z)s.t.Ax+Bz=d(3)
式中, h 1 ( x ) = 0 , h 2 ( z ) = ∥ z ∥ ∞ , A = F , B = − I , d = − s , x = C , z = s + F C {h_1}(x) = 0,{h_2}(z) = {\left\| z \right\|_\infty },{\bf{A = F}},{\bf{B}} = - {\bf{I}},{\bf{d}} = - {\bf{s}},{\bf{x}} = {\bf{C}},{\bf{z}} = {\bf{s + FC}} h1(x)=0,h2(z)=z,A=F,B=I,d=s,x=C,z=s+FC。(3)式问题可用AD-LPMM算法求解:
AD-LPMM
Initialization: x 0 ∈ C L , z 0 ∈ C N , y 0 ∈ C N , ρ > 0 , α ≥ ρ λ max ⁡ ( A H A ) , β ≥ ρ λ max ⁡ ( B H B ) {{\mathbf{x}}^{\mathbf{0}}}\in {{\mathbb{C}}^{L}},{{\mathbf{z}}^{\mathbf{0}}}\in {{\mathbb{C}}^{N}},{{y}^{\mathbf{0}}}\in {{\mathbb{C}}^{N}},\rho >0,\alpha \ge \rho {{\lambda }_{\max }}\left( {{\mathbf{A}}^{H}}\mathbf{A} \right),\beta \ge \rho {{\lambda }_{\max }}\left( {{\mathbf{B}}^{H}}\mathbf{B} \right) x0CL,z0CN,y0CN,ρ>0,αρλmax(AHA),βρλmax(BHB).
General step: for any k = 0,1,…execute the following:
( a ) x k + 1 = p r o x 1 α h 1 [ x k − ρ α A H ( A x k + B z k − c + 1 ρ y k ) ] ( b ) z k + 1 = p r o x 1 β h 2 [ z k − ρ β B H ( A x k + 1 + B z k − c + 1 ρ y k ) ] ( c ) y k + 1 = y k + ρ ( A x k + 1 + B z k + 1 − c ) (4) \begin{array}{l} (a){\rm{ }}{{\bf{x}}^{k + 1}} = {\rm{pro}}{{\rm{x}}_{\frac{1}{\alpha }{h_1}}}\left[ {{{\bf{x}}^k} - \frac{\rho }{\alpha }{{\bf{A}}^H}\left( {{\bf{A}}{{\bf{x}}^k} + {\bf{B}}{{\bf{z}}^k} - {\bf{c}} + \frac{1}{\rho }{{\bf{y}}^k}} \right)} \right]\\ (b){\rm{ }}{{\bf{z}}^{k + 1}} = {\rm{pro}}{{\rm{x}}_{\frac{1}{\beta }{h_2}}}\left[ {{{\bf{z}}^k} - \frac{\rho }{\beta }{{\bf{B}}^H}\left( {{\bf{A}}{{\bf{x}}^{k + 1}} + {\bf{B}}{{\bf{z}}^k} - {\bf{c}} + \frac{1}{\rho }{{\bf{y}}^k}} \right)} \right]\\ (c){\rm{ }}{{\bf{y}}^{k + 1}} = {{\bf{y}}^k} + \rho \left( {{\bf{A}}{{\bf{x}}^{k + 1}} + {\bf{B}}{{\bf{z}}^{k + 1}} - {\bf{c}}} \right) \end{array}\tag{4} (a)xk+1=proxα1h1[xkαρAH(Axk+Bzkc+ρ1yk)](b)zk+1=proxβ1h2[zkβρBH(Axk+1+Bzkc+ρ1yk)](c)yk+1=yk+ρ(Axk+1+Bzk+1c)(4)
上式中, p r o x ⋅ [ ⋅ ] {\rm{pro}}{{\rm{x}}_ \cdot }\left[ \cdot \right] prox[]表示迫近映射,详细可以参考维基百科

3.1 h 1 ( x ) {{h}_{1}}(x) h1(x)的迫近映射:

因为 h 1 ( x ) = 0 {{h}_{1}}(x)=0 h1(x)=0,所以: pro x 1 α h 1 ( x ) = x \text{pro}{{\text{x}}_{\frac{1}{\alpha }{{h}_{1}}}}\left( \mathbf{x} \right)=\mathbf{x} proxα1h1(x)=x.

3.2 h 2 ( x ) {{h}_{2}}(x) h2(x)的迫近映射:

根据Moreau分解, 1 β h 2 ( x ) \frac{1}{\beta }{{h}_{2}}\left( \mathbf{x} \right) β1h2(x)的迫近映射可以表示为:
p r o x 1 β ∥ ⋅ ∥ ∞ ( x ) = x − 1 β p r o x β ∥ ⋅ ∥ ∞ ∗ ( β x ) = x − 1 β p r o x ∥ ⋅ ∥ ∞ ∗ ( β x ) = x − 1 β p r o j ∥ ⋅ ∥ 1 ≤ 1 ( β x ) \begin{array}{c} {\rm{pro}}{{\rm{x}}_{\frac{1}{\beta }{{\left\| \cdot \right\|}_\infty }}}\left( {\bf{x}} \right) = {\bf{x}} - \frac{1}{\beta }{\rm{pro}}{{\rm{x}}_{\beta \left\| \cdot \right\|_\infty ^*}}\left( {\beta {\bf{x}}} \right)\\ = {\bf{x}} - \frac{1}{\beta }{\rm{pro}}{{\rm{x}}_{\left\| \cdot \right\|_\infty ^*}}\left( {\beta {\bf{x}}} \right)\\ = {\bf{x}} - \frac{1}{\beta }{\rm{pro}}{{\rm{j}}_{{{\left\| \cdot \right\|}_1} \le 1}}\left( {\beta {\bf{x}}} \right) \end{array} proxβ1(x)=xβ1proxβ(βx)=xβ1prox(βx)=xβ1proj11(βx)
上式中 ∥ ⋅ ∥ ∞ ∗ = δ ∥ ⋅ ∥ 1 ≤ 1 ( z ) \left\| \cdot \right\|_\infty ^* = {\delta _{{{\left\| \cdot \right\|}_1} \le 1}}\left( {\bf{z}} \right) =δ11(z) ∥ ⋅ ∥ ∞ {\left\| \cdot \right\|_\infty } 的对偶函数 (是一个指示函数),当 ∥ ⋅ ∥ 1 ≤ 1 {\left\| \cdot \right\|_1} \le 1 11时函数输出0,否则函数输出为 ∞ \infty 。上式中第二个等号成立是因为 β ∥ ⋅ ∥ ∞ ∗ = ∥ ⋅ ∥ ∞ ∗ \beta \left\| \cdot \right\|_\infty ^* = \left\| \cdot \right\|_\infty ^* β=,第三个等号成立是因为指示函数 δ ∥ ⋅ ∥ 1 ≤ 1 ( z ) {\delta _{{{\left\| \cdot \right\|}_1} \le 1}}\left( {\bf{z}} \right) δ11(z)的迫近映射与投影到集合 ∥ ⋅ ∥ 1 ≤ 1 {\left\| \cdot \right\|_1} \le 1 11等价。 p r o j ∥ ⋅ ∥ 1 ≤ 1 ( β x ) {\rm{pro}}{{\rm{j}}_{{{\left\| \cdot \right\|}_1} \le 1}}\left( {\beta {\bf{x}}} \right) proj11(βx)可进一步简化,令 z = β u {\bf{z}} = \beta {\bf{u}} z=βu p r o j ∥ ⋅ ∥ 1 ≤ 1 ( β x ) = arg ⁡ min ⁡ ∥ z ∥ 1 ≤ 1 1 2 ∥ z − β x ∥ 2 = β ⋅ arg ⁡ min ⁡ ∥ β u ∥ 1 ≤ 1 1 2 ∥ β u − β x ∥ 2 = β ⋅ arg ⁡ min ⁡ ∥ u ∥ 1 ≤ 1 β 1 2 ∥ β u − β x ∥ 2 = β ⋅ arg ⁡ min ⁡ ∥ u ∥ 1 ≤ 1 β 1 2 ∥ u − x ∥ 2 = β ⋅ p r o j ∥ ⋅ ∥ 1 ≤ 1 β ( x ) \begin{array}{c} {\rm{pro}}{{\rm{j}}_{{{\left\| \cdot \right\|}_1} \le 1}}\left( {\beta {\bf{x}}} \right) = \mathop {\arg \min }\limits_{{{\left\| {\bf{z}} \right\|}_1} \le 1} \frac{1}{2}{\left\| {{\bf{z}} - \beta {\bf{x}}} \right\|^2}\\ = \beta \cdot \mathop {\arg \min }\limits_{{{\left\| {\beta {\bf{u}}} \right\|}_1} \le 1} \frac{1}{2}{\left\| {\beta {\bf{u}} - \beta {\bf{x}}} \right\|^2}\\ = \beta \cdot \mathop {\arg \min }\limits_{{{\left\| {\bf{u}} \right\|}_1} \le \frac{1}{\beta }} \frac{1}{2}{\left\| {\beta {\bf{u}} - \beta {\bf{x}}} \right\|^2}\\ = \beta \cdot \mathop {\arg \min }\limits_{{{\left\| {\bf{u}} \right\|}_1} \le \frac{1}{\beta }} \frac{1}{2}{\left\| {{\bf{u}} - {\bf{x}}} \right\|^2}\\ = \beta \cdot {\rm{pro}}{{\rm{j}}_{{{\left\| \cdot \right\|}_1} \le \frac{1}{\beta }}}\left( {\bf{x}} \right) \end{array} proj11(βx)=z11argmin21zβx2=ββu11argmin21βuβx2=βu1β1argmin21βuβx2=βu1β1argmin21ux2=βproj1β1(x)
上式中第二个等号成立是因为 z = β u {\bf{z}} = \beta {\bf{u}} z=βu变换后,相当于对 z {\bf{z}} z进行了 β \beta β倍的压缩,因此第一行的最小化问题与第二行的等价;倒数第二行的等号成立是因为优化指标乘以一个非0的系数之后,不改变原优化问题。而投影 p r o j ∥ ⋅ ∥ 1 ≤ 1 β ( x ) {\rm{pro}}{{\rm{j}}_{{{\left\| \cdot \right\|}_1} \le \frac{1}{\beta }}}\left( {\bf{x}} \right) proj1β1(x)
pro j ∥ ⋅ ∥ 1 ≤ 1 β ( x ) = { x ,  i f ∥ x ∥ 1 ≤ 1 β s g n ( x ) ⋅ max ⁡ { ∣ x ∣ − α x , 0 } ,  e l s e \text{pro}{{\text{j}}_{{{\left\| \cdot \right\|}_{1}}\le \frac{1}{\beta }}}\left( \mathbf{x} \right)=\left\{ \begin{matrix} \mathbf{x}\text{, }if{{\left\| \mathbf{x} \right\|}_{1}}\le \frac{1}{\beta } \\ sgn \left( \mathbf{x} \right)\cdot \max \left\{ \left| \mathbf{x} \right|-{{\alpha }_{x}},0 \right\}\text{, }else \\ \end{matrix} \right. proj1β1(x)={xifx1β1sgn(x)max{xαx,0}else
式中 s g n ( ⋅ ) sgn \left( \cdot \right) sgn()表示取数据的正负号, α x {{\alpha }_{x}} αx ∥ s g n ( x ) ⋅ max ⁡ { ∣ x ∣ − α , 0 } ∥ 1 = 1 β {{\left\| sgn \left( \mathbf{x} \right)\cdot \max \left\{ \left| \mathbf{x} \right|-\alpha ,0 \right\} \right\|}_{1}}=\frac{1}{\beta } sgn(x)max{xα,0}1=β1的正数解,可以利用二分法进行查找。综上: pro x 1 β ∥ ⋅ ∥ ∞ ( x ) = { 0  , i f ∥ x ∥ 1 ≤ 1 β x − s g n ( x ) ⋅ max ⁡ { ∣ x ∣ − α x , 0 }  , e l s e   \text{pro}{{\text{x}}_{\frac{1}{\beta }{{\left\| \cdot \right\|}_{\infty }}}}\left( \mathbf{x} \right)=\left\{ \begin{matrix} 0\text{ ,}if{{\left\| \mathbf{x} \right\|}_{1}}\le \frac{1}{\beta } \\ \mathbf{x}-sgn \left( \mathbf{x} \right)\cdot \max \left\{ \left| \mathbf{x} \right|-{{\alpha }_{x}},0 \right\}\text{ ,}else\text{ } \\ \end{matrix} \right. proxβ1(x)={0 ,ifx1β1xsgn(x)max{xαx,0} ,else 
通过以上的变换之后,关于式(4)的求解问题就只剩下简单的向量和矩阵操作,实际操作中可以根据所需精度和实时性要求调整AD-LPMM算法的参数 ρ \rho ρ, α \alpha α, β \beta β以及迭代次数。

4.仿真结果

子载波数 K = 624 K = 624 K=624,额外预留子载波数 L = 48 L = 48 L=48,时域采样点数 N = 1024 N = 1024 N=1024 ρ = 0.25 \rho=0.25 ρ=0.25 α = 2.44 × 1 0 − 4 \alpha = 2.44 \times {10^{ - 4}} α=2.44×104 β = 0.25 \beta = 0.25 β=0.25,调制方式为QPSK。图(1)是原始OFDM信号和脉冲整形PS-OFDM的信号时域幅度图。
在这里插入图片描述

图1  624子载波+48TR子载波时域信号幅度图

总结

以上就是OFDM信号降PAPR算法的TR算法原理以及相关AD-LPMM算法求解的详细过程。其中对于迫近映射需要一定基础才能看懂,强烈推荐查阅相关资料。后续也打算出一篇迫近映射的相关介绍,敬请期待。对于同样需要额外子载波的脉冲整形方法可参考这篇脉冲整形PS算法

本文作者: 渺小的颗星
本文链接: https://blog.csdn.net/weixin_40319158/article/details/147983522?sharetype=blogdetail&sharerId=147983522&sharerefer=PC&sharesource=weixin_40319158&spm=1011.2480.3001.8118
版权声明: 转载请注明出处!

参考:
https://blog.csdn.net/2301_78484069/article/details/131670981

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值