
计算机视觉
文章平均质量分 86
一点人工一点智能
小工具集散地,知识随笔的分享小站,公众号一点人工一点智能
展开
-
MapFusion:一种新的多模态BEV特征融合方法
MapFusion:一种新的多模态BEV特征融合方法该论文的主要贡献在于提出了一个新的多模态BEV特征融合方法MapFusion,该方法通过引入CIT和DDF两个核心模块来实现跨模态交互和模态集成。本文介绍了一种名为MapFusion的新方法,用于多模态地图构建任务中的特征融合。该方法采用鸟瞰视角(Bird's-Eye View,BEV)特征作为输入,并通过引入交叉模态交互和双动态融合模块来解决不同传感器之间的语义不匹配问题。原创 2025-02-15 13:21:03 · 1000 阅读 · 0 评论 -
DrivingGPT:使用多模态自回归Transformers统一驾驶世界建模和规划
这篇论文介绍了一种新的方法,名为DrivingGPT,旨在将驾驶世界建模(driving world models)和规划统一为一个序列建模问题。传统的驾驶世界模型主要依赖于视频扩散模型,缺乏灵活性以整合其他模态数据,如动作。相比之下,自回归变换器已经在处理多模态数据方面表现出色。原创 2025-01-11 10:27:19 · 924 阅读 · 0 评论 -
【荐闻】空中目标检测综述
总结了空中目标检测的发展现状和面临的挑战,提出了未来的研究方向,包括针对空中图像特性的特定数据增强方法、更高效的尺度特征融合、从多模态数据中学习、鸟瞰视角感知、视觉推理和可信赖的检测模型等。原创 2024-05-27 18:59:54 · 876 阅读 · 0 评论 -
【荐闻】动态NeRF(Dynamic NeRF)综述
传统三维重建技术逐渐倾向于应用研究,而NeRF作为新颖的隐式三维重建领域,以其高分辨率的合成能力和对少量图像的适应性脱颖而出。动态NeRF相比静态NeRF能表达更丰富的信息,有更广泛的应用前景,因此,未来NeRF研究将更多关注动态NeRF,其在NeRF领域的重要性将日益增加。原创 2024-05-24 10:20:51 · 1232 阅读 · 0 评论 -
综述:基于深度学习的物体姿态估计
本章首先介绍了主流的基于深度学习的对象姿态估计数据集,包括实例级、类别级和未见对象姿态估计方法。然后,综述了相关的评估指标。最后,详细介绍了基于对应、模板、投票和回归的方法。原创 2024-05-16 13:37:20 · 1276 阅读 · 0 评论 -
计算机视觉:三维重建技术
本书探讨了用于通过图像确定实体物体的几何属性的理论和计算技术。它涵盖了基本概念,并提供了更高级研究所需的数学背景。本书分为清晰简明的章节,涵盖了广泛的主题,包括图像形成、相机模型、特征检测和三维重建。原创 2024-05-10 09:54:09 · 619 阅读 · 2 评论 -
基于Detectron2的计算机视觉实践
您将了解Detectron2架构的理论和可视化,并学习Detectron2中每个模块的工作原理。随着学习的深入,您将通过使用Detectron2在两个实际项目中开展实践,涵盖了目标检测和实例分割任务的数据准备、模型训练、微调和部署。即使您是计算机视觉领域的专家,并且对Detectron2的特性感兴趣,或者您想学习一些尖端的深度学习设计模式,本书也会对您有所帮助。通过阅读本深度学习书籍,您将获得扎实的理论知识和实用的动手能力,帮助您使用Detectron2解决高级计算机视觉任务。原创 2024-05-06 14:38:42 · 1104 阅读 · 1 评论 -
基于MATLAB的机器学习和深度学习
本书详细解释了MATLAB工具或应用程序的属性,包括输入和输出参数,通过附带的文本或表格指出其限制或适用性,并提供了一个完整的运行示例,其中包括所需的所有MATLAB命令提示代码。原创 2024-05-04 14:45:01 · 719 阅读 · 0 评论 -
117篇 | 3D Gaussian Splatting论文
本论文集划分为4个部分:综述&基础(14篇)、NeRF在AIGC(54篇)、NeRF在SLAM(自动驾驶)(25篇)、NeRF之场景建模(25篇)原创 2024-05-03 22:09:50 · 916 阅读 · 0 评论 -
基于深度学习的3D目标检测与跟踪
目标检测和跟踪对于自动驾驶来说是至关重要和基础的任务,旨在从场景中识别和定位出那些预定义类别的对象。在所有形式的自动驾驶数据中,3D点云学习引起了越来越多的关注。目前,有许多用于3D目标检测的深度学习方法。然而,鉴于点云数据的独特特性,点云的目标检测和跟踪任务仍需要深入研究。原创 2024-04-30 16:10:01 · 2477 阅读 · 0 评论 -
基于C++的数字图像处理
书籍各章涵盖了数字图像处理领域,并提出了理论上描述的每种方法的实用和功能实现。所涵盖的主要主题包括空间和频域滤波、数学形态学、特征提取以及在分割、运动估计、多光谱图像处理和3D可视化中的应用。原创 2024-04-29 21:07:06 · 571 阅读 · 1 评论 -
自动驾驶中的深度学习和计算机视觉
从自动驾驶汽车(SDCs)的基础知识开始,本书将带您了解建立和运行自动驾驶汽车所需的深度神经网络技术。一旦你掌握了基本知识,你将深入研究先进的计算机视觉技术,并学习如何使用深度学习方法来执行各种计算机视觉任务,如检测车道线、优化图像分类等。如果你是一名深度学习工程师、人工智能研究员,或者任何希望实施深度学习和计算机视觉技术来构建自动驾驶蓝图解决方案的人,这本书就是为你准备的。由于近些年的一些突破,自动驾驶技术现在是人工智能领域的一个新兴课题,并已将数据科学家的重点转移到制造将改变汽车行业的自动驾驶汽车上。原创 2024-04-29 20:53:42 · 927 阅读 · 0 评论 -
VIFNet:端到端的可见光-红外光图像去雾网络
本文通过可见光与红外光的融合,提出了一种新的图像去雾方法。实验结果表明,该方法在去除雾霾的同时,能够有效地保留图像细节和边缘信息。原创 2024-04-29 13:16:13 · 1598 阅读 · 0 评论 -
融合视角下的RGBT单目标跟踪综述
智能融合视角下的RGBT单目标跟踪综述RGBT视觉跟踪技术通过结合可见光与红外模态,有效应对低光环境、遮挡和伪装等复杂场景,显著提升跟踪性能,在多个领域展现出广阔的应用前景。原创 2024-04-29 11:53:36 · 3122 阅读 · 0 评论 -
基于NeRF的三维实景重建技术探索
NeRF通过深度学习的方法,将三维空间表示为一组可学习且连续的辐射场。在已知视角下,对场景进行一系列的捕获(包括拍摄到的图像以及每张图像对应的内外参),不需要中间三维重建的过程,仅根据位姿内参和图像,合成新视角下的图像。不同于传统的三维重建方法把场景表示为点云、网格、体素等显式的表达,NeRF独辟蹊径,将场景建模成一个连续的5D辐射场隐式存储在神经网络中,只需输入稀疏的多角度的2D图像,就可以通过训练得到一个神经辐射场模型,根据这个模型可以渲染出任意视角下的清晰照片。原创 2024-04-29 11:46:34 · 1600 阅读 · 0 评论 -
深度学习模型:面向实际操作专业人员的实用方法
本书采取不同的方法,聚焦于实际操作,同时将理论概念保持在必要的最低限度。书中首先介绍深度学习的基本信息,逐步深入主题,解释并阐释现有算法的局限性。原创 2024-04-28 18:17:59 · 1051 阅读 · 0 评论 -
基于车载点云数据的城市道路特征目标提取与三维重构
城市道路作为交通基础设施的重要组成部分,其数字化建模是智慧交通、自动驾驶以及基础设施变形监测等领域发展的必要前提[1]。尽管发达国家的道路建设已达到相对饱和的状态,但针对既有道路的快速、准确的数字化模型重建仍是研究的重点。在这方面,三维激光扫描技术通过激光雷达系统采集待测区域的点云数据,进而成为实现高精度重建的重要手段[2]。然而,现有的研究中,大多数的方法存在一些局限性,如人工参与度高、处理效率低、仅针对特定类型的原创 2024-04-27 22:14:25 · 1454 阅读 · 0 评论 -
图像分类导论:从模型设计到端到端
图像分类是计算机视觉任务中至关重要的组成部分,且具有很多应用。图像分类的传统方法包括在特征空间中进行特征提取和分类。目前最先进的方法采用深度神经网络进行端到端学习,其中特征提取和分类已集成到模型中。理解传统图像分类很重要,因为其许多设计概念与神经网络的组件直接对应。了解这些知识有助于揭示这些网络的行为,这些行为乍一看可能很复杂。本书从介绍用于模型驱动的特征提取和分类的方法开始,包括用于从图像中提取高级语义的基本计算机视觉技术。然后简要概述了使用生成和判别分类器的概率分类。原创 2024-04-27 11:18:57 · 993 阅读 · 2 评论 -
《深度学习在医学图像分析中的应用(第二版)》
本书是适用于学术和行业研究人员与研究生的一份优秀的学习资料,他们学习计算机视觉与医学图像计算和分析中的机器学习与深度学习课程。深度学习为医学图像分析问题提供了激动人心的解决方案,是未来应用的一个关键方法。本书阐述了神经网络和深度学习概念的原理与方法,展示了将深度学习作为核心组件整合在一起的算法如何应用于医学图像检测、分割、配准和计算机辅助分析。· 涵盖医学图像分析中的常见研究问题及其挑战· 描述最新的深度学习方法以及医学图像分析方法背后的理论。原创 2024-04-25 17:28:23 · 1281 阅读 · 1 评论 -
基于全局与局部感知网络的超高清图像去雾方法
带有雾霾的图像具有低对比度和模糊的特性,这会严重影响下游图像处理模型的表现,例如行人检测、图像分割等。对此,大量的单幅图像去雾方法被开发出来,它们的目的在于把输入的带有雾霾的图像转换成一张清晰图像。然而,伴随着移动设备和边缘设备对分辨率为4k图像处理方法的需求的不断增长,现存的图像去雾的方法很少能高效地处理一张带雾的超高清图像[1]。原创 2024-04-25 11:23:46 · 1009 阅读 · 0 评论 -
RoadBEV:鸟瞰视图下的路面重建
近年来,无人地面车辆(UGV)的快速发展对车载感知系统提出了更高的要求。对驾驶环境和条件的实时理解对于准确的运动规划和控制至关重要[1,2,3]。对车辆而言,道路是与物理世界唯一接触的介质。路面条件决定了许多车辆特性和驾驶性能[4]。路面不平坦,如凸起和坑洞(如图1(a)所示),会严重影响乘用车的乘坐体验。实时的路面条件感知,特别是几何高度感知,极大地有助于提高乘坐舒适度[5,6]。图1 我们的动机。(a)我们BEV中的重建方法在单目和立体配置下优于图像视角的方法。原创 2024-04-22 17:47:27 · 1976 阅读 · 0 评论 -
InstantMesh:利用稀疏视图大规模重建模型从单张图像高效生成3D网格
本文提出了InstantMesh,一个开源的即时图像到3D框架,使用基于transformer的稀疏视图大规模重建模型从多视图扩散模型生成的图像中创建高质量的3D物体。原创 2024-04-18 16:25:47 · 1669 阅读 · 0 评论 -
如何在自定义数据集上训练 YOLOv9
使用Roboflow Inference,您可以使用Python SDK在应用程序逻辑中引用模型,或者在Docker容器中运行模型,该容器可以作为微服务进行部署。我们克隆了YOLOv9项目代码,下载了模型权重,然后使用默认的COCO权重进行推理。我们克隆了YOLOv9项目代码,下载了模型权重,然后使用默认的COCO权重进行推理。最小的模型在MS COCO数据集的验证集上实现了46.8%的AP,而最大的模型实现了55.6%。我们在640大小的图像上训练了我们的模型,这使我们能够用较少的计算资源训练模型。原创 2024-03-14 00:12:57 · 882 阅读 · 0 评论 -
书籍推荐- 《计算机视觉的特征描述》
Scott在全球范围内提供了图像和视觉解决方案,并与许多行业密切合作,包括太空、军事、情报、执法、政府研究和学术组织。最近,Scott为商业市场的主要公司和初创公司工作,解决了计算机视觉、图像、图形、可视化、机器人、过程控制、工业自动化、计算机安全、密码学以及个人电脑、笔记本电脑、手机和平板电脑的图像和机器视觉消费应用领域的问题。《计算机视觉的特征描述》是为工程师、科学家和学术研究人员编写的,这些领域包括视频分析、场景理解、机器视觉、人脸识别、手势识别、模式识别、通用物体检测、视频处理和计算摄影。转载 2024-01-07 05:46:53 · 143 阅读 · 0 评论 -
从SLAM到态势感知:挑战与调查
从理解当前感知开始,考虑可能的语义关系,使用给定时间瞬间的感知观察来构建短期理解,称为直接情境理解,或包含过去获得的知识,即积累的情境理解的长期模型。可以创建多个抽象关系来连接情境结构模型中的概念,例如几何关系(例如物体的形状)、语义关系(例如物体的类型和功能)、拓扑关系(例如空间中的顺序)、本体关系(例如常识概念的层次结构)、动态关系(例如物体之间的运动)或随机关系(例如包括不确定性信息)。值得注意的是,由于当前算法的发展限制了其应用范围,使其仅适用于特定环境,因此态势感知的关键方面仍不够成熟。原创 2023-06-05 12:01:07 · 306 阅读 · 1 评论 -
基于深度学习的视觉多目标跟踪研究综述
近年来的MOT算法主要采取根据目标的特征相似性将视频序列中的检测目标关联为完整轨迹的跟踪策略。根据模型为完成目标检测、特征提取和数据关联3个子任务所采取的跟踪范式,可以将近年来的MOT算法分为分离检测与特征提取的方法(Separate Detectionand Embedding,SDE)、联合检测与特征提取的方法(Joint Detection and Embedding,JDE)以及联合检测和跟踪的方法(Joint Detectionand Tracking,JDT)。原创 2023-05-07 16:21:04 · 1558 阅读 · 0 评论 -
2015-2022 基于学习的相机标定方法
在大多数条件下这些参数(内参、外参、畸变参数)必须通过实验与计算才能得到,这个求解参数的过程就称之为相机标定(或摄像机标定)。无论是在图像测量或者机器视觉应用中,相机参数的标定都是非常关键的环节,其标定结果的精度及算法的稳定性直接影响相机工作产生结果的准确性。在图像测量过程以及机器视觉应用中,为确定空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系,必须建立相机成像的几何模型,这些几何模型参数就是相机参数。原创 2023-05-05 15:58:03 · 158 阅读 · 0 评论 -
结合局部与全局特征的点云语义分割卷积网络
本文提出了一种直接应用于非结构化三维点云的新型机载激光点云语义分割网络。该网络分别考虑了局部结构特征和全局上下文信息,并通过一组对比实验验证了其有效性。本文方法能根据点云的局部结构动态学习卷积权重,同时考虑点云的不平衡密度分布和所有点之间的空间关系。原创 2023-04-26 16:33:14 · 1415 阅读 · 0 评论 -
基于3D激光雷达的SLAM算法研究现状与发展趋势
本文从SLAM算法经典框架出发,总结分析了其前端、后端以及深度学习与多传感器融合在激光SLAM中的研究现状,系统阐述现在主流的3D激光SLAM算法原理及其存在的问题和不足,探讨了3D激光SLAM算法的研究热点和发展趋势。原创 2023-04-26 16:23:57 · 3308 阅读 · 0 评论 -
多视图点云配准算法综述
针对三维多视图点云配准问题,本研究首先对近二十余年的方法进行了系统分类,然后依据分类对方法进行归纳总结,随后介绍了该领域的主流数据库与评价指标,最后对本研究工作进行总结原创 2023-02-17 16:14:54 · 3569 阅读 · 0 评论 -
2023年最值得关注的机器人趋势TOP10
这项研究提供了数据驱动的创新智能,通过概述机器人行业的初创企业和开发技术,增强了战略决策。分析利用无人机航拍的数据并规划出可以付诸实施的计划,这已经跨越了产业的边界,不仅仅是大型企业需要这项技术,还有石油和天然气公司、非政府组织,以及政府也希望利用这项技术来监控人类难以进入的区域。这可以防止库存耗尽。与传统的工业机器人不同,Cobot或协作机器人具有顶尖的传感器和算法,可以确保人们周围的安全行为。此外,由于机器人技术在国防、制造业、医疗保健和航天行业的应用,保护机器人解决方案免受非法访问是必要的。原创 2022-12-28 20:43:21 · 385 阅读 · 0 评论 -
LPCG:用激光点云指导单目的3D物体检测
因此,作者团队提出了一个框架(LCPG),在未标记的LiDAR点云上生成伪3D box标签,以扩大单目3D检测器的训练集。有趣的是,对于基于LiDAR的3D检测器,使用不同的训练设置,作者团队根据经验发现,由生成的伪标签训练的单目3D检测器显示出接近的性能。由于精确的3D位置测量,基于LiDAR的3D探测器预测的伪标签相当准确,可以直接用于单目3D检测器的训练。受上述结论的启发,并考虑到激光雷达3D测量的精确性,作者团队提出了一种简单有效的框架,称为激光雷达点云引导下的单目3D物体检测(LPCG)。原创 2022-12-16 17:40:58 · 557 阅读 · 0 评论 -
IROS2022 | 雪天环境的激光点云处理
在现在很多的数据集中,都可以很容易地找到此类测量值,如逐帧点云,这些数据通常以10Hz的频率进行采样,并已用于3D对象检测、语义分割和建图。这种网络可以在没有任何标记数据的情况下进行训练,与最先进的方法相比,可以在7ms内处理10万个点,在降噪方面效果很好。我们需要增强车辆周围的点的重要性,并且同时维持点的顺序,因为雪花的强度值几乎都是0,而场景中通常都是具有正的强度值,所以可以提升噪声与场景之间的对比度。最后,要明确,不是每个像素都有对应的值,因为有些方向的点事缺少的,比如天空和一些透明的点。原创 2022-11-25 11:34:29 · 1503 阅读 · 0 评论 -
下载 | 101篇NeRF优质论文推荐(含项目代码)
对于入门的伙伴,建议先阅读Survey部分,了解NeRF的发展,然后再阅读每一个部分,对相关的项目代码进行剖析,希望每一位伙伴都能通过这份资料学有所得!!原创 2022-11-21 16:18:43 · 611 阅读 · 1 评论 -
小白系列(1) | 计算机视觉之图像分类
这篇文章,是对图像分类的技术做了一个简单的入门级的介绍,包括图像分类的重要性、基于机器学习/深度学习的图像分类介绍、实际的应用方向等等。原创 2022-11-07 20:58:59 · 6477 阅读 · 0 评论 -
两万字 | 视觉SLAM研究综述与未来趋势讨论
我们对在VSLAM领域发表的45篇有影响力的论文进行了深入的文献调研,根据不同的特点对这些论文进行了分类,包括方法创新性、领域应用新颖性、算法优化和语义层面,还讨论了目前的趋势和未来的方向,这可能有助于研究人员进行研究。原创 2022-11-01 15:55:05 · 2205 阅读 · 0 评论 -
万字综述|自动驾驶多传感器融合感知
多模态融合是自动驾驶系统感知的一个基本任务,最近引起了许多研究者的兴趣。然而,由于原始数据的噪声、信息的未充分利用以及多模态传感器的未对齐,实现相当好的性能并不是一件容易的事情。在本文中,我们对现有的自动驾驶多传感器融合感知方法进行了文献综述。整体上,我们对50多篇论文进行了详细的分析,其中包括使用激光雷达和相机尝试解决目标检测和语义分割任务的方法。与传统的融合模型分类方法不同,我们提出了一种创新的方法,从融合阶段的角度,用一种更合理的分类法将融合模型分为两大类、四小类。原创 2022-10-11 11:42:18 · 2626 阅读 · 0 评论 -
毫米波雷达视觉融合方案综述(数据级/决策级/特征级融合)
本论文详细介绍了基于毫米波雷达和视觉融合的障碍物检测方法,从任务介绍、评估标准和数据集三方面展开。并对毫米波雷达和视觉融合过程的传感器部署、传感器标定和传感器融合(融合方法分为数据级、决策级和特征级融合方法)三个部分进行了汇总讨论。...转载 2022-08-28 09:31:08 · 5500 阅读 · 1 评论 -
多任务多传感器数据融合实现3D目标检测
本文提出了一种多任务多传感器检测模型,该模型联合推理 2D 和 3D 对象检测、全局估计和深度补全。转载 2022-08-26 16:53:47 · 1183 阅读 · 0 评论 -
17篇点云处理综述-点云语义分割、点云物体检测、自动驾驶中的点云处理……
收集了17篇点云处理的综述文章,方便大家全面了解三维点云处理的技术发展、了解其发展路线,便于咱们自己的学习规划及学术方向研究。原创 2022-08-16 13:50:00 · 2256 阅读 · 0 评论