《深度学习在医学图像分析中的应用(第二版)》

《深度学习for医疗图像分析》介绍了神经网络和深度学习在医学图像处理中的关键作用,包括检测、分割、配准等,适合学术和行业研究人员,详细阐述了理论与最新方法,以及在实际医疗场景的应用案例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

书籍:Deep Learning for Medical Image Analysis, 2nd Edition
作者:S. Kevin Zhou,Hayit Greenspan,Dinggang Shen
出版:Academic Press
书籍下载-《深度学习在医学图像分析中的应用(第二版)》本书阐述了神经网络和深度学习概念的原理与方法,展示了将深度学习作为核心组件整合在一起的算法如何应用于医学图像检测、分割、配准和计算机辅助分析。icon-default.png?t=N7T8https://mp.weixin.qq.com/s/mLLwEz2Jq6pCVok6HHWOdA

01  书籍介绍

本书是适用于学术和行业研究人员与研究生的一份优秀的学习资料,他们学习计算机视觉与医学图像计算和分析中的机器学习与深度学习课程。

深度学习为医学图像分析问题提供了激动人心的解决方案,是未来应用的一个关键方法。本书阐述了神经网络和深度学习概念的原理与方法,展示了将深度学习作为核心组件整合在一起的算法如何应用于医学图像检测、分割、配准和计算机辅助分析。

· 涵盖医学图像分析中的常见研究问题及其挑战

· 描述最新的深度学习方法以及医学图像分析方法背后的理论

· 讲解如何将算法应用于广泛的应用领域,包括心脏、神经和功能、结肠镜检查、OCTA 应用和模型评估

02  作者简介

S. Kevin Zhou博士致力于医学图像计算研究,特别是分析和重建及其在实际应用中的应用。目前,他是中国科学技术大学(USTC)生物医学工程学院杰出教授和创院执行院长,并担任医学影像、机器人、分析计算和学习中心(MIRACLE)主任。周博士曾担任西门子医疗保健研究部首席专家和高级研发总监。他被选为 AIMBE、IAMBE、IEEE、MICCAI 和 NAI 的院士,并作为董事会成员和财务主管为 MICCAI 协会服务。

Hayit Greenspan博士专注于开发用于医学图像分析的深度学习工具及其在临床上的转化。她是特拉维夫大学工程学院的生物医学工程教授(休假中),目前供职于西奈山伊坎医学院的放射学系和人工智能与人类健康系,纽约市。她是生物医学工程与影像(BMEII)研究所人工智能核心主任,也是西奈山人工智能与新兴技术博士新项目联席主任。格林斯潘博士也是 RADLogics Inc. 的联合创始人,这是一家将人工智能工具引入临床医生支持的初创公司

Dinggang Shen博士是中国上海上海科技大学生物医学工程学院教授和创院院长,同时也是上海联影智能(UII)的联席首席执行官。他是 IEEE、AIMBE、IAPR 和 MICCAI 的院士。他曾是北卡罗来纳大学教堂山分校(UNC-CH)杰弗里·霍普特杰出研究员和正教授(终身教职),教堂山,北卡罗来纳州,美国。他的研究兴趣包括医学图像分析、计算机视觉和模式识别。他在国际期刊和会议论文集上发表了 1500 多篇同行评议论文,H 指数为 130,被引用次数超过 70000 次。

03  书籍大纲

Foreword Computational Medical Image Analysis has become a prominent field of research at the intersection of Informatics, Computational Sciences, and Medicine, supported by a vibrant community of researchers working in academics, industry, and clinical centers. During the past few years, Machine Learning methods have brought a revolution to the Computer Vision community, introducing novel efficient solutions to many image analysis problemsthat had long remained unsolved.For this revolution to enter the field of Medical Image Analysis, dedicated methods must be designed which take into account the specificity of medical images. Indeed, medical images capture the anatomy and physiology of patients through the measurements of geometrical, biophysical, and biochemical properties of their living tissues. These images are acquired with algorithms that exploit complex med- ical imaging processes whose principles must be well understood as well as those governing the complex structures and functions of the human body. The book Deep Learning for Medical Image Analysis edited by S. Kevin Zhou, Hayit Greenspan, and Dinggang Shen, top-notch researchers from both academia and industry in designing machine learning methods for medical image analysis, cov- ers state-of-the-art reviews of deep learning approaches for medical image analysis, including medical image detection/recognition, medical image segmentation, medi- cal image registration, computer aided diagnosis and disease quantification, to name some of the most important addressed problems. The book, which starts with an in- troduction to Convolutional Neural Networks for Computer Vision presents a set of novel deep learning methods applied to a variety of clinical problems and imaging modalities operating at various scales, including X-ray radiographies, Magnetic Res- onance Imaging, Computed Tomography, microscopic imaging, ultrasound imaging, etc. This impressive collection of excellent contributions will definitely se
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一点人工一点智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值