
机器学习
文章平均质量分 84
一点人工一点智能
小工具集散地,知识随笔的分享小站,公众号一点人工一点智能
展开
-
《机器学习特征提取》
这是一本面向专业人士和研究生的实用指南,适用于那些正开始从事信息提取职业生涯的人。它以易于理解的方式解释了空间特征提取,并包括了关于如何收集空间特征的高度值、如何在地图上下文中开发3D模型等真实案例研究。原创 2024-06-04 15:05:45 · 1287 阅读 · 0 评论 -
《Python深度学习,第3版》
深度学习领域在过去几年中发展迅速,如今涵盖了广泛的应用领域。这使得在没有扎实基础的情况下,要理解并应用深度学习变得具有挑战性。本书将引导您从神经网络的基础知识到当今使用的最先进的大型语言模型。原创 2024-05-14 15:58:03 · 1275 阅读 · 1 评论 -
深度学习网络:设计、开发和部署
该教材为学生和工业从业者介绍了深度学习网络的设计、开发和部署的多个方面。它引入了一个深度学习工具集,将深度学习概念与之相结合,以增强理解。它还提供了编程的设计和技术方面,以及一种实际的方法来理解编程和技术在各种应用中的关系。它为读者提供了一个教程,学习广泛的概念建模和编程工具,以实现深度学习应用。原创 2024-05-08 20:12:58 · 1173 阅读 · 0 评论 -
Python机器学习手册:从预处理到深度学习的实际解决方案
这本实用指南提供了200多个自洽的方案,帮助您解决在工作中可能遇到的机器学习挑战。如果您熟悉Python及其库,包括pandas和scikit-learn,则可以解决特定的问题,从加载数据到训练模型和利用神经网络。原创 2024-05-04 14:47:36 · 526 阅读 · 0 评论 -
基于MATLAB的机器学习和深度学习
本书详细解释了MATLAB工具或应用程序的属性,包括输入和输出参数,通过附带的文本或表格指出其限制或适用性,并提供了一个完整的运行示例,其中包括所需的所有MATLAB命令提示代码。原创 2024-05-04 14:45:01 · 719 阅读 · 0 评论 -
向量语义学
开发字向量的计算语言学家和深度学习研究人员主要依赖于日益增多的大型语料库和配备高并行GPU和TPU计算引擎的计算机,他们的关注点是赋予计算机自然语言能力,以实现机器翻译或问答等实际应用。原创 2024-05-02 09:55:54 · 886 阅读 · 0 评论 -
正则化手册:探索改进机器学习模型功能的实用技巧
正则化是一种能够对未见数据产生准确结果的可靠方法。然而,应用正则化具有挑战性,因为它有多种形式,并且对每个模型必须进行适当的调整。《正则化手册》为您提供了处理任何情况所需的适当工具和方法,包括现成可用的工作代码和理论解释。原创 2024-05-01 17:29:56 · 72 阅读 · 0 评论 -
基于深度学习的3D目标检测与跟踪
目标检测和跟踪对于自动驾驶来说是至关重要和基础的任务,旨在从场景中识别和定位出那些预定义类别的对象。在所有形式的自动驾驶数据中,3D点云学习引起了越来越多的关注。目前,有许多用于3D目标检测的深度学习方法。然而,鉴于点云数据的独特特性,点云的目标检测和跟踪任务仍需要深入研究。原创 2024-04-30 16:10:01 · 2477 阅读 · 0 评论 -
基于C++的数字图像处理
书籍各章涵盖了数字图像处理领域,并提出了理论上描述的每种方法的实用和功能实现。所涵盖的主要主题包括空间和频域滤波、数学形态学、特征提取以及在分割、运动估计、多光谱图像处理和3D可视化中的应用。原创 2024-04-29 21:07:06 · 571 阅读 · 1 评论 -
自动驾驶系统中的端到端学习
本文还研究了如何处理场景条件下的驾驶行为,这超出了反应控制的能力。除了端到端结构外,学习方法也发挥着关键作用。端到端学习可以产生合理的驾驶行为,即使在复杂的城市驾驶场景中也是如此。端到端驾驶模型中的表示学习至关重要,语义分割等辅助视觉任务可以帮助形成更具信息性的驾驶表示,尤其是在训练数据有限的情况下。简单的卷积神经网络通常只能进行反应控制,不能在特定场景中进行复杂的推理。然而,即使机器人面临着与传统计算机视觉类似的问题,但这样的成功也还没有像视觉那样彻底改变机器人,即系统的手动Pipeline设计不完善。原创 2024-04-29 20:57:07 · 871 阅读 · 1 评论 -
自动驾驶中的深度学习和计算机视觉
从自动驾驶汽车(SDCs)的基础知识开始,本书将带您了解建立和运行自动驾驶汽车所需的深度神经网络技术。一旦你掌握了基本知识,你将深入研究先进的计算机视觉技术,并学习如何使用深度学习方法来执行各种计算机视觉任务,如检测车道线、优化图像分类等。如果你是一名深度学习工程师、人工智能研究员,或者任何希望实施深度学习和计算机视觉技术来构建自动驾驶蓝图解决方案的人,这本书就是为你准备的。由于近些年的一些突破,自动驾驶技术现在是人工智能领域的一个新兴课题,并已将数据科学家的重点转移到制造将改变汽车行业的自动驾驶汽车上。原创 2024-04-29 20:53:42 · 927 阅读 · 0 评论 -
融合视角下的RGBT单目标跟踪综述
智能融合视角下的RGBT单目标跟踪综述RGBT视觉跟踪技术通过结合可见光与红外模态,有效应对低光环境、遮挡和伪装等复杂场景,显著提升跟踪性能,在多个领域展现出广阔的应用前景。原创 2024-04-29 11:53:36 · 3122 阅读 · 0 评论 -
深度学习模型:面向实际操作专业人员的实用方法
本书采取不同的方法,聚焦于实际操作,同时将理论概念保持在必要的最低限度。书中首先介绍深度学习的基本信息,逐步深入主题,解释并阐释现有算法的局限性。原创 2024-04-28 18:17:59 · 1051 阅读 · 0 评论 -
图像分类导论:从模型设计到端到端
图像分类是计算机视觉任务中至关重要的组成部分,且具有很多应用。图像分类的传统方法包括在特征空间中进行特征提取和分类。目前最先进的方法采用深度神经网络进行端到端学习,其中特征提取和分类已集成到模型中。理解传统图像分类很重要,因为其许多设计概念与神经网络的组件直接对应。了解这些知识有助于揭示这些网络的行为,这些行为乍一看可能很复杂。本书从介绍用于模型驱动的特征提取和分类的方法开始,包括用于从图像中提取高级语义的基本计算机视觉技术。然后简要概述了使用生成和判别分类器的概率分类。原创 2024-04-27 11:18:57 · 993 阅读 · 2 评论 -
《高效的机器学习团队:机器学习从业者的最佳实践》
掌握你需要的宝贵技能和方法,以加快交付机器学习解决方案的速度。通过这份实用指南,数据科学家、机器学习工程师及其领导者将学习如何以一种实际简便的方式,弥补数据科学和精益产品交付之间的差距。David Tan、Ada Leung 和 Dave Colls 将向你展示如何应用经典软件工程技能和精益产品交付实践,以减轻劳碌和浪费,缩短反馈循环,并在构建机器学习系统和产品时改进你的团队流程。原创 2024-04-26 20:53:46 · 589 阅读 · 0 评论 -
《深度学习在医学图像分析中的应用(第二版)》
本书是适用于学术和行业研究人员与研究生的一份优秀的学习资料,他们学习计算机视觉与医学图像计算和分析中的机器学习与深度学习课程。深度学习为医学图像分析问题提供了激动人心的解决方案,是未来应用的一个关键方法。本书阐述了神经网络和深度学习概念的原理与方法,展示了将深度学习作为核心组件整合在一起的算法如何应用于医学图像检测、分割、配准和计算机辅助分析。· 涵盖医学图像分析中的常见研究问题及其挑战· 描述最新的深度学习方法以及医学图像分析方法背后的理论。原创 2024-04-25 17:28:23 · 1281 阅读 · 1 评论 -
基于深度学习的视觉多目标跟踪研究综述
近年来的MOT算法主要采取根据目标的特征相似性将视频序列中的检测目标关联为完整轨迹的跟踪策略。根据模型为完成目标检测、特征提取和数据关联3个子任务所采取的跟踪范式,可以将近年来的MOT算法分为分离检测与特征提取的方法(Separate Detectionand Embedding,SDE)、联合检测与特征提取的方法(Joint Detection and Embedding,JDE)以及联合检测和跟踪的方法(Joint Detectionand Tracking,JDT)。原创 2023-05-07 16:21:04 · 1558 阅读 · 0 评论 -
2023年机器学习趋势分析
2023年,机器学习有哪些具有潜力的研究方向?转载 2022-12-13 11:23:30 · 1021 阅读 · 0 评论