偏差与方差

本文深入探讨了机器学习中泛化误差的分解原理,将其分为偏差、方差与噪声三部分,并解析了它们各自的作用。通过实例说明了如何衡量学习算法的预期预测与实际结果之间的偏差,以及数据扰动对学习性能的影响。同时,讨论了学习算法能力、数据充分性和学习任务难度对泛化性能的共同作用。
摘要由CSDN通过智能技术生成

重点理解期望。。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

————————————————————————————————————————————————————————

结论:泛化误差可分解为偏差、方差与噪声之和

在这里插入图片描述


泛化误差可分解为偏差、方差与噪声之和
在这里插入图片描述


红色部分为0的理解

重点理解

在这里插入图片描述

期望

。。。。。。。。是试验中每次可能结果的概率乘以其结果的总和


在这里插入图片描述
每个样本的几个D的蓝色部分和为0
这里的期望预测输出f(x)理解为mean,平均值
eg.

样本i在5个不同D中预测结果:1 1 1 1 0

f_(i)=0.8

E=0.2*80%+(-0.8)*20%=0


假定噪声期望为0,也即
在这里插入图片描述
不是×××
在这里插入图片描述

——————————————————————————————————————————————————————
偏差度量了学习算法期望预测与真实结果的偏离程度;即刻画了学习算法本身的拟合能力;
方差度量了同样大小训练集的变动所导致的学习性能的变化;即刻画了数据扰动所造成的影响;
噪声表达了在当前任务上任何学习算法所能达到的期望泛化误差的下界;即刻画了学习问题本身的难度。

泛化性能是由学习算法的能力、数据的充分性以及学习任务本身的难度所共同决定的。给定学习任务为了取得好的泛化性能,需要使偏差小(充分拟合数据)而且方差较小(减少数据扰动产生的影响),噪声不可控。

在这里插入图片描述

——————————————————————————————————————————————————————

偏差-方差窘境

一般来说,偏差与方差是有冲突的,称为偏差-方差窘境
如下图所示,假如我们能控制算法的训练程度:
在这里插入图片描述
在训练不足时,学习器拟合能力不强,训练数据的扰动不足以使学习器的拟合能力产生显著变化,此时偏差主导泛化错误率;
随着训练程度加深,学习器拟合能力逐渐增强,方差逐渐主导泛化错误率;
训练充足后,学习器的拟合能力非常强,训练数据的轻微扰动都会导致学习器的显著变化,若训练数据自身非全局特性被学到则会发生过拟合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值