[论文阅读] 对话式推荐系统的进展与挑战:综述(Advances and Challenges in Conversational Recommender Systems: ASurvey)-01

0. 序言

本文主要对何向南、高崇民等老师的关于对话式推荐系统(CRS)综述文章 Advances and Challenges in Conversational Recommender Systems: A Survey  的学习。

1. 论文摘要

推荐系统已经在大量的行业应用中被广泛的使用,然而传统的推荐系统 (静态推荐) 由于其固有的缺陷(在学习了解用户偏好时没有用户明确的指示和积极的反馈),很难回答好两个重要的问题: (A)用户到底喜欢什么? (B)用户为什么喜欢这个商品? 

而最近兴起的会话推荐系统(CRS)可以让用户与系统通过自然语言进行动态的交互,十分有利于获取用户确切的偏好。即使在开发CRSs上投入了大量的精力,但现有的CRS模型、技术等还不成熟。本文将发展CRSs面临的主要挑战归纳为五个方面:

  1. Question-based User Preference Elicitation. 问题导向的用户偏好启发
  2. Multi-turn Conversational Recommendation Strategies 多轮对话策略
  3. Natural Language Understanding and Generation 自然语言理解与生成
  4. Trade-offs between Exploration and Exploitation (E&E) 探索和利用问题
  5. Evaluation and User Simulation 评估和用户模拟

这些研究方向还涉及信息检索(IR)自然语言处理(NLP)人机交互(HCI)等多个研究领域。基于本文,希望对未来的研究有所帮助。

2. 背景

一个有效的、准确的、及时的推荐系统可以帮助用户找到想要的信息,给企业带来巨大的价值。 因此,推荐技术的发展一直受到学术界和工业界的关注。

传统的推荐系统(静态推荐模型)主要通过分析用户过去的离线行为(如点击历史、访问日志、对物品的评级)来预测用户对物品的偏好。其经过训练的离线的历史行为数据,然后,它被用来为在线用户提供服务。尽管它们被广泛使用,但它们没有回答两个重要的问题

A.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值