0. 序言
本文主要对何向南、高崇民等老师的关于对话式推荐系统(CRS)综述文章 Advances and Challenges in Conversational Recommender Systems: A Survey 的学习。
1. 论文摘要
推荐系统已经在大量的行业应用中被广泛的使用,然而传统的推荐系统 (静态推荐) 由于其固有的缺陷(在学习了解用户偏好时没有用户明确的指示和积极的反馈),很难回答好两个重要的问题: (A)用户到底喜欢什么? (B)用户为什么喜欢这个商品?
而最近兴起的会话推荐系统(CRS)可以让用户与系统通过自然语言进行动态的交互,十分有利于获取用户确切的偏好。即使在开发CRSs上投入了大量的精力,但现有的CRS模型、技术等还不成熟。本文将发展CRSs面临的主要挑战归纳为五个方面:
- Question-based User Preference Elicitation. 问题导向的用户偏好启发
- Multi-turn Conversational Recommendation Strategies 多轮对话策略
- Natural Language Understanding and Generation 自然语言理解与生成
- Trade-offs between Exploration and Exploitation (E&E) 探索和利用问题
- Evaluation and User Simulation 评估和用户模拟
这些研究方向还涉及信息检索(IR)、自然语言处理(NLP)和人机交互(HCI)等多个研究领域。基于本文,希望对未来的研究有所帮助。
2. 背景
一个有效的、准确的、及时的推荐系统可以帮助用户找到想要的信息,给企业带来巨大的价值。 因此,推荐技术的发展一直受到学术界和工业界的关注。
传统的推荐系统(静态推荐模型)主要通过分析用户过去的离线行为(如点击历史、访问日志、对物品的评级)来预测用户对物品的偏好。其经过训练的离线的历史行为数据,然后,它被用来为在线用户提供服务。尽管它们被广泛使用,但它们没有回答两个重要的问题:
A.