智慧工地人员行为分析系统依据深度学习算法+边缘计算分析,智慧工地人员行为分析系统对监控画面种人员着装穿戴进行实时分析预警,当智慧工地人员行为分析系统发现人员违规行为时,立即抓拍存档预警并发给后台。智慧工地人员行为分析系统对监控画面下的有关运动目标(人与物)开展实时分析识别,发现物的不安全状态或者人的不安全行为立即预警,提升监管人员的效率。

Python是一门解释性脚本语言.编译型语言写的程序执行之前,需要一个专门的编译过程,把程序编译成为机器语言的文件,比如exe文件,以后要运行的话就不用重新翻译了,直接使用编译的结果就行了( exe文件),因为翻译只做了一次,运行时不需要翻译,所以编译型语言的程序执行效率一般来说较高。脚本语言又被称为扩建的语言,或者动态语言,是一种编程语言,用来控制软件应用程序,脚本通常以文本(如 ASCII)保存,只在被调用时进行解释或编译。所以一般使用Python来实现特定功能而不是较为复杂的后端。

与C / C++等语言相比,Python速度较慢。也就是说,Python可以使用C / C++轻松扩展,这使我们可以在C / C++中编写计算密集型代码,并创建可用作Python模块的Python包装器。这给我们带来了两个好处:首先,代码与原始C / C++代码一样快(因为它是在后台工作的实际C++代码),其次,在Python中编写代码比使用C / C++更容易。OpenCV-Python是原始OpenCV C++实现的Python包装器。

智慧工地人员行为分析系统 Python_计算机视觉

伴随着智能安全观念的日益提升,安防监控已经从单一的监控系统发展成视频监控系统,其数量规模很大,给后台人员带来了很大压力。后台人员一般有数百个乃至数千个监控录像画面。长时间盯着屏幕后,后台人员会逐渐进入生理疲惫情况,难以在监控大屏上快速反应识别安全隐患。

# From Mr. Dinosaur
 
import os
 
 
def listdir(path, list_name):  # 传入存储的list
    for file in os.listdir(path):
        file_path = os.path.join(path, file)
        if os.path.isdir(file_path):
            listdir(file_path, list_name)
        else:
            list_name.append(file_path)
 
 
list_name = []
path = 'D:/PythonProject/data/'  # 文件夹路径
listdir(path, list_name)
print(list_name)
 
with open('./list.txt', 'w') as f:  # 要存入的txt
    write = ''
    for i in list_name:
        write = write + str(i) + '\n'
    f.write(write)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.

智慧工地人员行为分析系统采用AI智能监控分析技术+边缘ai视觉,实时分析人的危险行为和物体的不安全状态,运用现场已有的监控画面主动开展AI视频识别分析预警,进一步提高现场人员的安全保障,改变原先的传统监控摄像头事后查找被动作用,降低人力成本提升监控效率。