读《Learning Representations of Graph Data -- A Survey》

69 篇文章 0 订阅
2 篇文章 0 订阅

4 核方法

定义映射k,输入一对集合X,Y的笛卡尔积
x,y∈X,Y,有k(x,y)
对称性
正定性:若kij=k(xi,xj)正定,即对任意系数ci,cj,对cicjk(xi,xj)的连加不小于0(这不是半正定吗?而且正定有啥用来着,为啥有这种需求)

4.1 图的核方法

结构袋Bag-of-Structures方法

图核k(G, G′)记作两图特征向量的积

现有图核均是基于R卷积核(这里的R指关系,应该是来自计算理论基础或者离散数学的定义)

可分为图上核和图间核

4.1.1 路径核

随机游走核 [41]
——————
最短路径核[44]
——————
环模式核[45]

4.1.2 子树核

子树核[46]
——————
WL核[48]

4.1.3 子图核

(搞不明白子图和子树有什么区别)

5 图表示学习

5.1 核方法

深度图核 【68】

结构袋方法存在子结构依赖、子结构稀疏和对角优势的问题。
所以在两图特征向量之间再乘一个|S|x|S|的半正定矩阵(有点像在欧氏距离之间乘以一个协方差逆矩阵得到马氏距离)

核神经网络 【69】
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值