读《Learning Representations of Graph Data -- A Survey》

4 核方法

定义映射k,输入一对集合X,Y的笛卡尔积
x,y∈X,Y,有k(x,y)
对称性
正定性:若kij=k(xi,xj)正定,即对任意系数ci,cj,对cicjk(xi,xj)的连加不小于0(这不是半正定吗?而且正定有啥用来着,为啥有这种需求)

4.1 图的核方法

结构袋Bag-of-Structures方法

图核k(G, G′)记作两图特征向量的积

现有图核均是基于R卷积核(这里的R指关系,应该是来自计算理论基础或者离散数学的定义)

可分为图上核和图间核

4.1.1 路径核

随机游走核 [41]
——————
最短路径核[44]
——————
环模式核[45]

4.1.2 子树核

子树核[46]
——————
WL核[48]

4.1.3 子图核

(搞不明白子图和子树有什么区别)

5 图表示学习

5.1 核方法

深度图核 【68】

结构袋方法存在子结构依赖、子结构稀疏和对角优势的问题。
所以在两图特征向量之间再乘一个|S|x|S|的半正定矩阵(有点像在欧氏距离之间乘以一个协方差逆矩阵得到马氏距离)

核神经网络 【69】
封闭回路的无监督学习结构化表示 封闭回路的无监督学习结构化表示是一种机器学习方法,旨在通过建立闭环反馈以自动地学习数据之间的结构化表示。在无监督学习中,我们通常没有标签的辅助信息,因此要求模型能够从数据中自动发现隐藏的结构和模式。 封闭回路的无监督学习方法的关键思想是通过对模型输出和输入进行比较来进行训练。在这个闭环中,模型的输出被重新注入到模型的输入中,从而形成了一个持续的迭代过程。模型通过调整自身的参数来最小化输入和输出之间的差异,以此来改善所学到的表示。 使用封闭回路进行无监督学习的一个例子是自编码器。自编码器是一种神经网络模型,它的输入和输出都是相同的。模型的目标是通过学习如何将输入编码为一个低维的表示,并且能够从这个低维表示中重构出输入。在训练过程中,自编码器通过最小化输入和重构输出之间的差异来调整自身的参数。 封闭回路的无监督学习方法有许多优点。首先,由于无需标签,这种方法可以适用于大量未标记的数据。其次,学习到的结构化表示可以用于许多任务,如数据压缩、降噪、特征提取等。此外,通过引入封闭回路,模型可以在训练过程中不断自我纠正,从而改善表示的质量。 总之,封闭回路的无监督学习方法通过建立闭环反馈来自动地学习数据之间的结构化表示。该方法可以应用于无标签数据,并且通过迭代过程来不断改善所学到的表示。这种方法在很多任务中都具有广泛的应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值