4 核方法
定义映射k,输入一对集合X,Y的笛卡尔积
x,y∈X,Y,有k(x,y)
对称性
正定性:若kij=k(xi,xj)正定,即对任意系数ci,cj,对cicjk(xi,xj)的连加不小于0(这不是半正定吗?而且正定有啥用来着,为啥有这种需求)
4.1 图的核方法
结构袋Bag-of-Structures方法
图核k(G, G′)记作两图特征向量的积
现有图核均是基于R卷积核(这里的R指关系,应该是来自计算理论基础或者离散数学的定义)
可分为图上核和图间核
4.1.1 路径核
随机游走核 [41]
——————
最短路径核[44]
——————
环模式核[45]
4.1.2 子树核
子树核[46]
——————
WL核[48]
4.1.3 子图核
(搞不明白子图和子树有什么区别)
5 图表示学习
5.1 核方法
深度图核 【68】
结构袋方法存在子结构依赖、子结构稀疏和对角优势的问题。
所以在两图特征向量之间再乘一个|S|x|S|的半正定矩阵(有点像在欧氏距离之间乘以一个协方差逆矩阵得到马氏距离)