逻辑回归的记录

参考:
https://www.cnblogs.com/zhizhan/p/4868555.html

https://blog.csdn.net/SongGu1996/article/details/99441652?ops_request_misc=&request_id=&biz_id=102&utm_term=%E9%80%BB%E8%BE%91%E5%9B%9E%E5%BD%92%20matlab&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-6-.nonecase&spm=1018.2226.3001.4187

1、逻辑回归。先定位二项分类,就是是或者不是,0或者1。这样好理解一下,以后再延伸。看例子:

从别人那里copy过来的(我太懒了)
在这里插入图片描述分析:上面的例子很好理解,根据前面的4个属性,来判断是或者不是。
这个就是分类器,可以用bp,或者决策树等分类器。
现在用logit回归分类器。

2、这个分类器的模型是可以得到吗?可以,用一个函数来表示。就像线性回归一样,可以用一个函数来表示这个模型,看图:
在这里插入图片描述

因为输入的是4个,是一个向量,那么参数也可以是向量。因此,就用这样的一个函数来表示这个分类器,用来预测或者判断y的值,比如输入(3,5,4,2),来判断y0 or y1。

3、问题来了,参数beta们怎么得到?用以上的数据(100条)来训练得到(机器学习用语)。思路就是把分类的数据带进去,根据输出的数据之间的总差值最小是最好的。如果是线性拟合的话,叫最小二乘法来着。这个用sigmoid函数拟合的话,从统计的角度来说,叫“最大似然法”,就是参数估计,我觉的同一个意思,用的是机器学习的方法,看例子的截图:

在这里插入图片描述
4、

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值