GNNExplainer: Generating Explanations for Graph Neural Networks 个人总结

本文是对GNNExplainer的个人总结,它是一款模型无关的图神经网络解释器,旨在提取重要子图结构和节点特征。通过最大化互信息优化任务,GNNExplainer解释了节点预测输出的决定因素。实验部分展示了其在不同数据集和基线模型上的表现。
摘要由CSDN通过智能技术生成

GNNExplainer: Generating Explanations for Graph Neural Networks 个人总结

写在前面:为方便阅读,尽量使用中文总结,对于翻译无把握或专有词汇,在中文后附上原文字段。此外,水平有限,对文章理解有偏差部分恳请大家海涵, 指正。

0. 原作信息

@inproceedings{ying2019gnnexplainer,
  title={Gnnexplainer: Generating explanations for graph neural networks},
  author={Ying, Zhitao and Bourgeois, Dylan and You, Jiaxuan and Zitnik, Marinka and Leskovec, Jure},
  booktitle={Advances in Neural Information Processing Systems},
  pages={9240--9251},
  year={2019}
}

1. Contribution 本文贡献

  • 提出第一款通用,模型无关的(model-agnostic)对于GNN模型的解释器GNNEXPLAINER

  • 形式化描述GNNEXPLAINER为最大化互信息的优化任务

  • 抽取重要的子图结构及节点特征子集,作为模型解释。

gnnexplainer

2. Background 背景信息

对于非图结构的神经网络,解释方法主要有如下两个方向:

  1. 为整个网络构建简单的代替模型

常为模型无关的(model-agnostic),在待解释样本点的局部建立可信的估计。

E.g., 线性模型如LIME,规则集合如ANN_DT

  1. 识别模型计算过程中的重要层面

E.g. 关注特征梯度(feature gradients)等。

对于图神经网络设计解释方法,除去节点特征外,还需要结合考虑图的结构特征

3. Problem Formulation 问题定义

3.1 GNN回顾

抽象GNN基本操作如下:

给定GNN模型 Φ \Phi Φ , 对于 l l l 层节点 v v v的特征表达求取,共经过如下3步。

  1. 与其邻居节点进行信息传递:

    m i j l = MSG ⁡ ( h i l − 1 , h j l − 1 , r i j ) m_{i j}^{l}=\operatorname{MSG}\left(\mathbf{h}_{i}^{l-1}, \mathbf{h}_{j}^{l-1}, r_{i j}\right) mijl=MSG(hil1,hjl1,rij)

  2. 聚合邻居节点信息:

    M i l = AGG ⁡ ( { m i j l ∣ v j ∈ N v i } ) M_{i}^{l}=\operatorname{AGG}\left(\left\{m_{i j}^{l} | v_{j} \in \mathcal{N}_{v_{i}}\right\}\right) Mil=AGG({ mijlvjNvi})

  3. 结合自身节点上层表达,生成本层节点表达

    h i l = UPDATE ⁡ ( M i l , h i l − 1 ) \mathbf{h}_{i}^{l}=\operatorname{UPDATE}\left(M_{i}^{l}, \mathbf{h}_{i}^{l-1}\right) hil=UPDATE(Mil,hil1)

3.2 GNNEXPLAINER: Problem formulation

对于节点 v v v,其经过图神经网络后得到的embedding,由其对应的邻居节点及特征决定,分别计邻居组成的子图结构为 G c ( v )

  • 7
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Feature Generating Networks (FGN) for Zero-Shot Learning (ZSL) 是种用于零样本习的模型。在 ZSL 中,模型需要通过学从已知类别到未知类别映射关系,从而能够在未知类别样本情况下进行分类FGN 模型通过两个键组件来实现这一目标:器网络和判别器。生成器网络用于生成未知类别的特征表示,而判别器网络用于将生成的特征与已知类别的特征进行区分。 具体来说,FGN 模型首先使用已类别的样本和它们对应的属性信息进行训练。生成器网络接收属性信息作为输入,并生成对应的特征表示。生成器网络的标是使生成的特征能够与已知类别的特征相似。 然后,FGN 模型使用生成器网络生成未知类别的特征表示,并使用判别器网络将这些生成的特征与已知类别的特征进行区分。判别网络的目标是将已知类别的特征与生成的特征区分开来,从而能够对未知类别进行分类。 FGN 模型通过交替训生成器网络和判别器网络来优化模型参数。生成器网络和判别器网络之间最小化他们之间的距离来进行协同训练,从而使生成的特征能够更好地与已知类别的特征相匹配。 FGN 模型的代码实现可以参考相关的论文或者开源代码库,如 GitHub 上的开源项目。在代码解读过程中,你可以深入分析生成器网络和判别器网络的架构、损失函数的定义和优化方法等。这将有助于你理解模型的原理和实现细节。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值