Metapath-guided Heterogeneous Graph Neural Network for Intent Recommendation 个人总结

本文介绍了MEIRec模型,该模型结合了统一术语嵌入和Metapath引导的异构图神经网络,用于电子商务意图推荐。通过预处理将高维稀疏特征转换为向量,然后利用Metapath指导的邻居信息聚合,实现对User、Item和Query的建模。实验表明,该模型在淘宝数据集上优于基线模型,证明了引入异构信息的有效性,并在线上AB测试中取得良好效果。
摘要由CSDN通过智能技术生成

Metapath-guided Heterogeneous Graph Neural Network for Intent Recommendation 个人总结

写在前面:为方便阅读,尽量使用中文总结,对于翻译无把握或专有词汇,在中文后附上原文字段.

另,CSDN对markdown 导入、latex支持还有进步空间啊,最完整的体验劳请移步GitHub拉下来再用Typora打开?(无耻引流开始了):my github

 

0. 原作信息

 @inproceedings{fan2019metapath,
   title={Metapath-guided Heterogeneous Graph Neural Network for Intent Recommendation},
   author={Fan, Shaohua and Zhu, Junxiong and Han, Xiaotian and Shi, Chuan and Hu, Linmei and Ma, Biyu and Li, Yongliang},
   booktitle={Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining},
   pages={2478--2486},
   year={2019}
 } 

 

1. Contributions 本文贡献

  • 提出基于词嵌入的预处理(propose a uniform term embedding mechanism);

  • 意图推荐任务,设计基于异构图上metapath的模型MEIRec( design a metapath-guided heterogeneous Graph Neural Network to learn the embeddings of objects);

  • 线下、线上实验都证明了模型的有效性。

 

2. Backgrounds 背景信息

2.1 意图推荐 (e-commerce intent recommendation)

例子:

  • 输入数据类型:

    • 特征数据 attribute data

    • 交互数据 interaction data

  • 与传统推荐系统的区别:

    1. 加入交互数据(点击等࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值