王高雄. 常微分方程. ISBN: 978-7-04-019366-4
马德高. 常微分方程辅导及习题精解:王高雄第3版. ISBN: 978-7-5634-1838-1
这次读的是王高雄的《常微分方程》以及为这本书配套的《常微分方程辅导及习题精解》。不过由于我这次只是以读闲书的心态去读,没太在意习题,所以主要还是读原书,配套的习题精解只是大致浏览了一下。
微分方程是数学中的显学,因为它和物理的关联性很强,很多物理问题需要用到微分方程理论提供的解法。因而很多书在介绍微分方程的时候都会带上比较强的物理背景。不过我个人还是更喜欢从纯数学的角度去理解这个领域。
所谓的微分方程虽然名字里带了“微分”两个字,但它和专讲微分、积分的分析学却大相径庭。微分方程研究的主题实际上既不是无穷极限理论也不是实数域上的方程,而是实函数方程。也就是说微分方程是一类以实函数为变量或根的方程。一些研究进一步把解的取值范围扩展到了复函数上,但总归说来是研究函数方程的。
函数方程相比于实数方程,其复杂性完全上了一个台阶。实数域上的的运算无非是加减乘除四则元素。而函数之间除了加减乘除还多了复合、微分、积分等运算。仅函数方程的分类就要比实数方程多得多。例如这本书讲的微分方程就是指方程中带有微分关系的函数方程。对微分方程还可以进一步分类。例如只含有一个自变量的叫常微分方程,含有大于等于两个彼此独立的自变量的则叫偏微分方程;最高只有一阶微分关系的叫一阶方程,更高阶的叫高阶方程;微分项指数为 1 或 0 的是线性方程,否则就是非线性方程。
在这各种各样的微分方程中,常微分方程比偏微分方程好解,一阶的比高阶的好解,线性的比非线性的好解。这本书虽然叫“常微分方程”,但实际上偏微分的、高阶的、非线性的都涉及到了。所以这其实是一本微分方程