多轴联动是机器人控制中的关键技术,用于协调多个关节或轴的运动,以完成复杂任务。以下是将详细介绍机器人的多轴联动,并结合代码示例来讲解涉及的模块和算法。
1. 多轴联动概述
多轴联动是指机器人多个关节或轴同时协调运动,以实现复杂的空间轨迹。这与单轴运动(一次只动一个关节)形成对比。多轴联动是机器人执行复杂任务的基础,如焊接、喷涂、搬运等。
2. 关键模块
实现多轴联动通常涉及以下几个关键模块:
-
运动学模型 (Kinematics Model):
- 正运动学 (Forward Kinematics): 已知各关节角度,计算机器人末端执行器(如工具中心点 TCP)的位置和姿态。
- 逆运动学 (Inverse Kinematics): 已知末端执行器的期望位置和姿态,计算所需的各关节角度。
-
轨迹规划 (Trajectory Planning):
- 关节空间规划 (Joint Space Planning): 在关节空间中规划各关节角度随时间的变化。
- 笛卡尔空间规划 (Cartesian Space Planning): 在笛卡尔空间(世界坐标系)中规划末端执行器的位置和姿态随时间的变化。
-
插补 (Interpolation):
- 在规划好的轨迹点之间进行插值,生成一系列中间点,使机器人平滑运动。
- 常用插补方法:线性插补、圆弧插补、样条插补等。
- 插补周期:控制系统在每个周期内计算各轴的目标位置,周期越短,运动越平滑。
-
速度/加速度控制 (Velocity/Acceleration Control):
- 控制各关节的运动速度和加速度,确保运动平稳,避免冲击。
- 常用控制算法:PID 控制、前馈控制、模型预测控制等。
-
电机/驱动器控制 (Motor/Drive Control):
- 将控制信号转换为电机/驱动器的控制指令,驱动电机运动。
3. 算法及代码示例
下面我将针对每个模块,详细介绍相关算法,并提供 Python 代码示例(使用 numpy
和 scipy
库)。
3.1 运动学模型
以一个常见的 6 自由度 (6-DOF) 工业机器人为例,我们使用 Denavit-Hartenberg (D-H) 参数法建立运动学模型。
3.1.1 D-H 参数
D-H 参数表定义了机器人各关节之间的几何关系。每个关节有四个参数:
- a (Link Length): 连杆长度,沿 x 轴的距离。
- α (Link Twist): 连杆扭转,绕 x 轴的旋转角度。
- d (Link Offset): 连杆偏移,沿 z 轴的距离。
- θ (Joint Angle): 关节角度,绕 z 轴的旋转角度。
示例 D-H 参数表 (UR5 机器人):
关节 | a (mm) | α (rad) | d (mm) | θ (rad) |
---|---|---|---|---|
1 | 0 | π/2 | 89.2 | θ1 |
2 | -425 | 0 | 0 | θ2 |
3 | -392 | 0 | 0 | θ3 |
4 | 0 | π/2 | 109.3 | θ4 |
5 | 0 | -π/2 | 94.75 | θ5 |
6 | 0 | 0 | 82.5 | θ6 |
3.1.2 正运动学
import numpy as np
from scipy.spatial.transform import Rotation as R
def dh_transform(a, alpha, d, theta):
"""计算 D-H 变换矩阵"""
ct = np.cos(theta)
st = np.sin(theta)
ca = np.cos(alpha)
sa = np.sin(alpha)
T = np.array([
[ct, -st * ca, st * sa, a * ct],
[st, ct * ca, -ct * sa, a * st],
[0, sa, ca, d],
[0, 0, 0, 1]
])
return T
def forward_kinematics(dh_params, joint_angles):
"""正运动学计算"""
T = np.eye(4) # 初始变换矩阵
for i in range(len(dh_params)):
a, alpha, d, _ = dh_params[i]
theta = joint_angles[i]
T = T @ dh_transform(a, alpha, d, theta)
return T
# UR5 机器人的 D-H 参数
dh_params_ur5 = [
[0, np.pi/2, 89.2, 0],
[-425, 0, 0, 0],
[-392, 0, 0, 0],
[0, np.pi/2, 109.3, 0],
[0, -np.pi/2, 94.75, 0],
[0, 0, 82.5, 0]
]
# 示例关节角度 (弧度)
joint_angles = [0.1, -0.5, 0.8, -0.3, 1.2, -0.7]
# 计算末端执行器的位姿
end_effector_pose = forward_kinematics(dh_params_ur5, joint_angles)
# 提取位置和姿态
position = end_effector_pose[:3, 3]
rotation_matrix = end_effector_pose[:3, :3]
r = R.from_matrix(rotation_matrix)
euler_angles = r.as_euler('xyz', degrees=True) # 转换为欧拉角
print("末端执行器位置 (mm):", position)
print("末端执行器姿态 (欧拉角, XYZ):", euler_angles)
3.1.3 逆运动学
逆运动学是一个比正运动学更复杂的问题, 通常没有封闭解(解析解), 需要使用数值解法或解析解法(特定机器人构型).
# 这是一个逆运动学数值解法的简化伪代码示例,实际应用中需要更复杂的算法库
# 比如IKPy, PyKDL, Orocos KDL等
import numpy as np
from scipy.optimize import minimize
def inverse_kinematics_numerical(dh_params, target_pose, initial_joint_angles):
def objective_function(joint_angles):
current_pose = forward_kinematics(dh_params, joint_angles)
# 计算当前位姿与目标位姿之间的误差
position_error = np.linalg.norm(current_pose[:3, 3] - target_pose[:3, 3])
#旋转矩阵比较复杂, 此处只是一个简化的示例
rotation_error = np.linalg.norm(current_pose[:3,:3] - target_pose[:3,:3])
return position_error + rotation_error # 返回总误差
# 使用优化算法求解
result = minimize(objective_function, initial_joint_angles, method='L-BFGS-B')
return result.x # 返回优化后的关节角度
# 假设目标位姿已知
target_pose = np.eye(4) # 示例目标位姿,这里设为单位矩阵,实际应用中需要设定
target_pose[:3,3] = [100,200,300] #设置一个目标位置
# 初始关节角度猜测值
initial_joint_angles = [0, 0, 0, 0, 0, 0]
# 计算逆运动学
joint_angles_solution = inverse_kinematics_numerical(dh_params_ur5, target_pose, initial_joint_angles)
print("逆运动学解 (关节角度, 弧度):", joint_angles_solution)
3.2 轨迹规划
3.2.1 关节空间规划
def joint_space_trajectory(start_angles, end_angles, duration, dt):
"""关节空间轨迹规划 (三次多项式插值)"""
num_joints = len(start_angles)
num_steps = int(duration / dt)
time_points = np.linspace(0, duration, num_steps)
trajectories = []
for i in range(num_joints):
# 三次多项式系数
a0 = start_angles[i]
a1 = 0
a2 = 3 * (end_angles[i] - start_angles[i]) / duration**2
a3 = -2 * (end_angles[i] - start_angles[i]) / duration**3
# 计算关节角度随时间的变化
joint_trajectory = a0 + a1 * time_points + a2 * time_points**2 + a3 * time_points**3
trajectories.append(joint_trajectory)
return np.array(trajectories).T # 转置为 (num_steps, num_joints)
# 示例起始和结束关节角度 (弧度)
start_angles = [0, 0, 0, 0, 0, 0]
end_angles = [np.pi/2, -np.pi/3, np.pi/4, 0, np.pi/2, 0]
# 运动时间和时间步长
duration = 5 # 秒
dt = 0.01 # 秒
# 生成关节空间轨迹
joint_trajectories = joint_space_trajectory(start_angles, end_angles, duration, dt)
# 打印前几个时间步的关节角度
print("关节空间轨迹 (前几个时间步):")
print(joint_trajectories[:5, :])
3.2.2 笛卡尔空间规划
笛卡尔空间规划, 需要先将笛卡尔空间的路径点转换成关节空间的点(通过逆运动学), 然后再进行关节空间的轨迹规划.
# 假设我们有一系列笛卡尔空间的目标点
cartesian_points = [[100,200,300],[150,250,350],[200,300,400]]
# 将笛卡尔点转换为关节空间点(需要逆运动学)
joint_space_points = []
for point in cartesian_points:
target_pose = np.eye(4)
target_pose[:3,3] = point
joint_angles = inverse_kinematics_numerical(dh_params_ur5,target_pose,[0,0,0,0,0,0])# 假设初始关节角
joint_space_points.append(joint_angles)
# 对关节空间的点进行轨迹规划(例如, 三次多项式插值)
# ... (与关节空间规划类似的代码)
import numpy as np
def trapezoidal_trajectory(q_start, q_end, v_max, a_max, t):
"""
梯形速度轨迹规划 (关节空间)
参数:
q_start: 起始位置
q_end: 目标位置
v_max: 最大速度
a_max: 最大加速度
t: 当前时间
返回:
q: 当前位置
v: 当前速度
a: 当前加速度
"""
delta_q = q_end - q_start
t_accel = min(v_max / a_max, np.sqrt(abs(delta_q) / a_max)) # 加速时间
v_peak = a_max * t_accel #实际最大速度
t_total = (delta_q/v_peak) + t_accel
if t < 0:
return q_start, 0, 0
if t <= t_accel: # 加速段
a = a_max if delta_q > 0 else -a_max
v = a * t
q = q_start + 0.5 * a * t**2
elif t <= t_total - t_accel: # 匀速段
a = 0
v = v_peak if delta_q > 0 else -v_peak
q = q_start + v_peak * (t-0.5*t_accel) if delta_q>0 else q_start + v_peak * (t-0.5*t_accel)
elif t <= t_total: # 减速段
a = -a_max if delta_q > 0 else a_max
v = v_peak + a*(t-(t_total-t_accel)) if delta_q>0 else -v_peak + a*(t-(t_total-t_accel))
q = q_end - 0.5*a_max*(t_total-t)**2 if delta_q > 0 else q_end + 0.5*a_max*(t_total-t)**2
else:
q = q_end
v = 0
a = 0
return q, v, a
def quintic_polynomial_trajectory(q_start, q_end, v_start, v_end, a_start, a_end, T, t):
"""
五次多项式轨迹规划(关节空间)
"""
#系数矩阵
A = np.array([
[0, 0, 0, 0, 0, 1],
[T**5, T**4, T**3, T**2, T, 1],
[0, 0, 0, 0, 1, 0],
[5*T**4, 4*T**3, 3*T**2, 2*T, 1, 0],
[0, 0, 0, 2, 0, 0],
[20*T**3, 12*T**2, 6*T, 2, 0, 0]
])
b = np.array([q_start, q_end, v_start, v_end, a_start, a_end])
x = np.linalg.solve(A, b) #求解系数
a0, a1, a2, a3, a4, a5 = x
q = a0*t**5 + a1*t**4 + a2*t**3 + a3*t**2 + a4*t + a5
v = 5*a0*t**4 + 4*a1*t**3 + 3*a2*t**2 + 2*a3*t + a4
a = 20*a0*t**3 + 12*a1*t**2 + 6*a2*t + 2*a3
return q,v,a
# 示例 (梯形轨迹)
q_start = 0
q_end = 10
v_max = 5
a_max = 10
time_points = np.linspace(0, 3, 100) # 仿真时间
positions = []
velocities = []
accelerations = []
for t in time_points:
q, v, a = trapezoidal_trajectory(q_start, q_end, v_max, a_max, t)
positions.append(q)
velocities.append(v)
accelerations.append(a)
import matplotlib.pyplot as plt
plt.figure(figsize=(12, 4))
plt.subplot(131)
plt.plot(time_points, positions)
plt.title("Position")
plt.subplot(132)
plt.plot(time_points, velocities)
plt.title("Velocity")
plt.subplot(133)
plt.plot(time_points, accelerations)
plt.title("Acceleration")
plt.show()
# 示例 (五次多项式轨迹)
q_start = 0
q_end = 1
v_start = 0
v_end = 0
a_start = 0
a_end = 0
T = 1 #总时长
time_points = np.linspace(0, T, 100)
positions = []
velocities = []
accelerations = []
for t in time_points:
q, v, a = quintic_polynomial_trajectory(q_start, q_end, v_start, v_end, a_start, a_end, T, t)
positions.append(q)
velocities.append(v)
accelerations.append(a)
plt.figure(figsize=(12, 4))
plt.subplot(131)
plt.plot(time_points, positions)
plt.title("Position")
plt.subplot(132)
plt.plot(time_points, velocities)
plt.title("Velocity")
plt.subplot(133)
plt.plot(time_points, accelerations)
plt.title("Acceleration")
plt.show()
3.3 插补
import numpy as np
def linear_interpolation(q_start, q_end, num_points):
"""
线性插补 (关节空间)
"""
return np.linspace(q_start, q_end, num_points)
def circular_interpolation(center, radius, start_angle, end_angle, num_points):
"""
圆弧插补(笛卡尔空间)
"""
angles = np.linspace(start_angle, end_angle, num_points)
x = center[0] + radius * np.cos(angles)
y = center[1] + radius * np.sin(angles)
z = np.full(num_points, center[2]) # 假设在XY平面内运动
# 假设姿态不变,都为单位矩阵
poses = []
for i in range(num_points):
pose = np.eye(4)
pose[0,3] = x[i]
pose[1,3] = y[i]
pose[2,3] = z[i]
poses.append(pose)
return poses
# 示例 (线性插补)
q_start = [0, 0, 0]
q_end = [1, 2, 3]
num_points = 10
interpolated_points = linear_interpolation(q_start, q_end, num_points)
print("线性插补点:\n", interpolated_points)
# 示例 (圆弧插补)
center = [1, 0, 1] #圆心
radius = 0.5
start_angle = 0
end_angle = np.pi
num_points = 20
interpolated_poses = circular_interpolation(center, radius, start_angle, end_angle, num_points)
#可视化
x = [p[0,3] for p in interpolated_poses]
y = [p[1,3] for p in interpolated_poses]
import matplotlib.pyplot as plt
plt.plot(x, y)
plt.axis('equal')
plt.title("Circular Interpolation")
plt.show()
3.4 速度/加速度控制
import numpy as np
# 简化的 PID 控制器示例
class PIDController:
"""
PID控制器
"""
def __init__(self, Kp, Ki, Kd, dt):
self.Kp = Kp
self.Ki = Ki
self.Kd = Kd
self.dt = dt
self.integral = 0
self.previous_error = 0
def update(self, setpoint, feedback):
error = setpoint - feedback
self.integral += error * self.dt
derivative = (error - self.previous_error) / self.dt
output = self.Kp * error + self.Ki * self.integral + self.Kd * derivative
self.previous_error = error
return output
# 示例
# 假设我们有一个电机,需要控制它的角度
dt = 0.01 # 控制周期
pid = PIDController(Kp=1.0, Ki=0.1, Kd=0.01, dt=dt)
setpoint = 10 # 目标角度
feedback = 0 # 初始角度
for i in range(100):
output = pid.update(setpoint, feedback)
# 假设电机模型是一个简单的积分器
feedback += output * dt
print(f"Time: {i*dt:.2f}, Setpoint: {setpoint}, Feedback: {feedback:.2f}, Output: {output:.2f}")
3.5 电机控制
电机控制通常涉及与硬件驱动器的通信, 这部分代码会根据具体的硬件平台和通信协议(如EtherCAT, CANopen, Modbus等)而有所不同.
# 这是一个伪代码示例,展示如何通过串口与电机驱动器通信
import serial
# 假设我们使用串口与电机驱动器通信
# ser = serial.Serial('/dev/ttyUSB0', 115200) # Linux
ser = serial.Serial('COM3', 115200) # Windows
def send_command(command):
ser.write(command.encode())
def read_response():
return ser.readline().decode()
# 示例:设置电机速度
send_command("SET_SPEED 1 1000") # 设置关节1的速度为1000
response = read_response()
print(f"驱动器响应: {response}")
ser.close()
4. 多轴联动综合示例
多轴联动综合示例1
import numpy as np
import matplotlib.pyplot as plt
# 综合示例:2D平面内的2自由度机械臂
def forward_kinematics(theta1, theta2, l1, l2):
x = l1 * np.cos(theta1) + l2 * np.cos(theta1 + theta2)
y = l1 * np.sin(theta1) + l2 * np.sin(theta1 + theta2)
return x, y
# 逆运动学
def inverse_kinematics_2d(x, y, l1, l2):
theta2 = np.arccos((x**2 + y**2 - l1**2 - l2**2) / (2 * l1 * l2))
theta1 = np.arctan2(y, x) - np.arctan2(l2 * np.sin(theta2), l1 + l2 * np.cos(theta2))
return theta1, theta2
# 线性插补
def linear_interpolation(start, end, num_points):
t = np.linspace(0, 1, num_points)
interpolated_points = start + t[:, np.newaxis] * (end - start)
return interpolated_points
# PID控制器
class PIDController:
def __init__(self, kp, ki, kd):
self.kp = kp
self.ki = ki
self.kd = kd
self.prev_error = 0
self.integral = 0
def compute(self, setpoint, measured_value):
error = setpoint - measured_value
self.integral += error
derivative = error - self.prev_error
output = self.kp * error + self.ki * self.integral + self.kd * derivative
self.prev_error = error
return output
# 示例
l1, l2 = 2, 2 # 机械臂长度
start = np.array([0, 0])
end = np.array([3, 4])
num_points = 100
path = linear_interpolation(start, end, num_points)
# 控制机械臂沿路径移动
theta1_list = []
theta2_list = []
pid1 = PIDController(kp=1.0, ki=0.1, kd=0.01)
pid2 = PIDController(kp=1.0, ki=0.1, kd=0.01)
for point in path:
x, y = point
theta1, theta2 = inverse_kinematics_2d(x, y, l1, l2)
theta1_list.append(theta1)
theta2_list.append(theta2)
# 可视化
plt.plot(path[:, 0], path[:, 1], label="Path")
plt.scatter([start[0], end[0]], [start[1], end[1]], color='red')
plt.legend()
plt.show()
# 关节角度变化
plt.plot(theta1_list, label="Theta1")
plt.plot(theta2_list, label="Theta2")
plt.legend()
plt.show()
多轴联动综合示例2
这个示例将结合上面的所有模块,实现一个简单的三轴机械臂从起始点到目标点的运动,并进行直线插补。
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D #用于3D绘图
# --- (1) 运动学模型 (使用前面定义的forward_kinematics和inverse_kinematics) ---
# DH参数 (Denavit-Hartenberg Parameters)
dh_params = [
[0, 0, 0, 0], # a, alpha, d, theta (theta是关节变量)
[0, -np.pi/2, 1, 0],
[1, 0, 0, 0],
[1, 0, 0, 0],
]
def forward_kinematics(theta):
"""正向运动学:计算末端执行器的位置和姿态"""
T = np.eye(4) # 初始变换矩阵
for i in range(len(dh_params)):
a, alpha, d, theta_i = dh_params[i]
theta_i += theta[i] #加上关节变量
# 单个关节的变换矩阵
Ti = np.array([
[np.cos(theta_i), -np.sin(theta_i)*np.cos(alpha), np.sin(theta_i)*np.sin(alpha), a*np.cos(theta_i)],
[np.sin(theta_i), np.cos(theta_i)*np.cos(alpha), -np.cos(theta_i)*np.sin(alpha), a*np.sin(theta_i)],
[0, np.sin(alpha), np.cos(alpha), d],
[0, 0, 0, 1]
])
T = T @ Ti # 矩阵连乘
return T
def inverse_kinematics(target_pose):
"""
逆运动学:计算关节角度 (解析解或数值解)
"""
x, y, z = target_pose[0:3, 3] # 目标位置
#非常简化逆解例子,可能不适用
theta1 = np.arctan2(y, x)
# 假设手腕是球形手腕,可以解耦位置和姿态
# 这里的计算非常依赖于具体的机械臂结构,需要根据实际情况修改
r = np.sqrt(x**2 + y**2)
s = z - dh_params[1][2] # 减去连杆1的长度
D = (r**2 + s**2 - dh_params[2][0]**2 - dh_params[3][0]**2) / (2 * dh_params[2][0] * dh_params[3][0])
if abs(D) > 1:
print("目标点超出工作空间!")
return None
theta3 = np.arctan2(-np.sqrt(1 - D**2), D) # Elbow up solution (也可以选择Elbow down)
theta2 = np.arctan2(s, r) - np.arctan2(dh_params[3][0] * np.sin(theta3), dh_params[2][0] + dh_params[3][0] * np.cos(theta3))
return [theta1, theta2, theta3]
# --- (2) 轨迹规划 (使用前面定义的linear_interpolation) ---
def linear_interpolation(q_start, q_end, num_points):
"""
线性插补 (关节空间)
"""
return np.linspace(q_start, q_end, num_points)
# --- (3) 插补算法 (这里直接使用线性插补) ---
# --- (4) 电机控制 (简化模拟,不包含PID) ---
# --- 主程序 ---
# 1. 定义起始点和目标点 (笛卡尔空间)
start_pose = forward_kinematics([0, 0, 0]) # 初始位姿
target_pose = np.array([
[1, 0, 0, 1.5],
[0, 1, 0, 0.5],
[0, 0, 1, 1.5],
[0, 0, 0, 1]
])
# 2. 逆运动学求解关节角度
start_joint_angles = inverse_kinematics(start_pose)
target_joint_angles = inverse_kinematics(target_pose)
if start_joint_angles is None or target_joint_angles is None:
print("无法到达目标点!")
exit()
# 3. 关节空间线性插补
num_points = 50
interpolated_joint_angles = linear_interpolation(start_joint_angles, target_joint_angles, num_points)
# 4. 仿真和可视化
trajectory = [] # 存储轨迹点
for joint_angles in interpolated_joint_angles:
pose = forward_kinematics(joint_angles)
trajectory.append(pose[:3, 3]) # 提取位置
trajectory = np.array(trajectory)
# 绘制轨迹
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot(trajectory[:, 0], trajectory[:, 1], trajectory[:, 2])
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
ax.set_title('Robot Trajectory (3D)')
# 绘制机械臂的起始和结束位置
def plot_robot(ax, joint_angles, color='b'):
T = np.eye(4)
points = [[0,0,0]] #基座
for i in range(len(dh_params)):
a, alpha, d, theta_i = dh_params[i]
theta_i += joint_angles[i]
Ti = np.array([
[np.cos(theta_i), -np.sin(theta_i)*np.cos(alpha), np.sin(theta_i)*np.sin(alpha), a*np.cos(theta_i)],
[np.sin(theta_i), np.cos(theta_i)*np.cos(alpha), -np.cos(theta_i)*np.sin(alpha), a*np.sin(theta_i)],
[0, np.sin(alpha), np.cos(alpha), d],
[0, 0, 0, 1]
])
T = T @ Ti
points.append(T[:3,3]) #记录每个关节末端位置
points = np.array(points)
ax.plot(points[:,0], points[:,1], points[:,2], marker='o', linestyle='-', color=color)
plot_robot(ax, start_joint_angles, color='b')
plot_robot(ax, target_joint_angles, color='r')
plt.show()
代码解释:
- 运动学模型: 沿用了前面的
forward_kinematics
和inverse_kinematics
函数。 - 轨迹规划和插补: 使用了关节空间线性插补(
linear_interpolation
)。 - 电机控制: 在这个简化示例中,省略了电机控制部分,直接使用插补后的关节角度进行仿真。
- 主程序:
- 定义起始和目标位姿。
- 通过逆运动学计算起始和目标关节角度。
- 在关节空间进行线性插补,得到一系列中间关节角度。
- 对每个中间关节角度进行正向运动学计算,得到末端执行器的位置,从而得到轨迹。
- 使用Matplotlib进行3D可视化。
- 增加plot_robot函数,绘制机械臂连杆。
改进方向:
- 更复杂的轨迹规划: 可以实现笛卡尔空间直线轨迹规划、圆弧轨迹规划,或者更高级的轨迹规划算法,如样条曲线、贝塞尔曲线等。
- 更真实的电机控制: 加入PID控制器,并考虑电机的动力学模型(例如,考虑电机的惯量、摩擦力等)。
- 碰撞检测和避障: 在轨迹规划过程中考虑障碍物,避免碰撞。
- 动力学仿真: 不仅考虑运动学,还考虑机器人的动力学特性,使仿真更接近真实情况。
- 更完善的逆运动学: 对于冗余自由度机器人,逆运动学有无穷多解,需要使用优化算法(如梯度下降)找到最优解,或者使用伪逆等方法。
好的,下面我将详细介绍机器人的多轴联动,并结合六轴机械臂的例子,给出具体的实现方法、算法和代码示例。
多轴联动综合示例3
下面是一个综合示例,演示如何使用Python和Robotics Toolbox for Python库实现六轴机械臂的多轴联动:
import roboticstoolbox as rtb
import numpy as np
import matplotlib.pyplot as plt
# 1. 创建机器人模型 (以UR5为例)
robot = rtb.models.UR5()
# 2. 定义起始和目标位姿
T_start = robot.fkine([0, -np.pi/2, 0, -np.pi/2, 0, 0]) # 初始位姿
T_end = rtb.SE3(0.5, 0.3, 0.2) * rtb.SE3.Rz(np.pi) # 目标位姿
# 3. 轨迹规划 (使用rtb内置的ctraj函数,笛卡尔空间直线轨迹)
traj = rtb.ctraj(T_start, T_end, 50) # 50个插补点
# 4. 逆运动学求解
q_traj = robot.ikine_LM(traj) # 使用Levenberg-Marquardt方法求解逆运动学
# 5. 关节空间轨迹可视化
# robot.plot(q_traj.q, movie='ur5_motion.gif') # 生成动画 (可选)
# 6.计算关节速度,加速度(差分方法)
q = q_traj.q
dt = 0.05 #假设采样时间
qd = np.diff(q, axis=0)/dt
qdd = np.diff(qd, axis=0)/dt
# 7. 绘图
time = np.linspace(0, 2.5, q.shape[0])
time_qd = np.linspace(0, 2.5, qd.shape[0])
time_qdd = np.linspace(0, 2.5, qdd.shape[0])
fig, axs = plt.subplots(3, 1, figsize=(8, 6))
axs[0].plot(time, q)
axs[0].set_title('Joint Angles')
axs[0].set_ylabel('Angle (rad)')
axs[1].plot(time_qd, qd)
axs[1].set_title('Joint Velocities')
axs[1].set_ylabel('Velocity (rad/s)')
axs[2].plot(time_qdd, qdd)
axs[2].set_title('Joint Accelerations')
axs[2].set_ylabel('Acceleration (rad/s^2)')
axs[2].set_xlabel('Time (s)')
plt.tight_layout()
plt.show()
# 8. 控制系统 (仿真)
# 在实际应用中,需要将计算出的关节角度、速度、加速度发送给机器人控制器,
# 控制器会根据这些指令控制电机运动。
# 这里我们只是进行仿真,不涉及具体的硬件控制。
print("仿真结束")
代码解释:
- 创建机器人模型: 使用
rtb.models.UR5()
创建一个UR5机器人的模型。 - 定义起始和目标位姿: 使用
fkine
计算初始位姿,使用SE3
定义目标位姿。 - 轨迹规划: 使用
rtb.ctraj
函数生成笛卡尔空间中的直线轨迹。 - 逆运动学求解: 使用
robot.ikine_LM
求解逆运动学,得到关节空间中的轨迹。 - 可视化: 使用
robot.plot
可视化机械臂的运动轨迹(可选)。 - 计算速度与加速度: 使用差分方法计算。
- 绘图: 可视化关节角度,速度,加速度
- 控制系统(仿真): 这里只是进行仿真,不涉及具体的硬件控制。在实际应用中,需要将计算出的关节角度发送给机器人控制器,控制器会根据这些指令控制电机运动。
4. 总结
以上代码示例涵盖了机器人多轴联动的主要模块和算法。实际应用中,还需要考虑以下因素:
- 机器人模型校准: 实际机器人的 D-H 参数可能与理论值存在偏差,需要进行校准。
- 奇异点处理: 在某些关节配置下,机器人会进入奇异点,导致逆运动学无解或关节速度无限大。需要特殊处理。
- 碰撞检测: 在运动过程中,需要检测机器人是否与环境或其他物体发生碰撞。
- 实时性: 工业应用通常要求实时控制,需要选择合适的硬件和软件平台,并优化算法。
- 安全性: 机器人控制系统必须具备安全机制,如紧急停止、限位开关等。
- 高级控制算法: 如力/力矩控制、自适应控制、学习控制等,可以提高机器人的性能和适应性。
多轴联动通过运动规划、逆运动学求解、插补算法和控制算法实现,涉及多种算法和工具,广泛应用于多个领域。未来随着技术进步,多轴联动将更加智能化和高效化。
希望这份详细的介绍和代码示例能帮助你更好地理解机器人多轴联动!请注意,这只是一个入门级的介绍,实际的机器人控制系统要复杂得多。