【Leetcode笔记】走迷宫(BFS, Dijkstra)

本文介绍了两种经典的图遍历算法——BFS(广度优先搜索)和Dijkstra,在解决迷宫路径寻找问题上的应用。490题使用BFS模板,从起点开始,逐层扩展直到找到目标。505题则采用Dijkstra模板,利用优先队列按路径长度进行优化,寻找从起点到目标的最短路径。两个问题都涉及到二维矩阵的遍历和路径的有效性判断。
摘要由CSDN通过智能技术生成

490. The Maze(BFS模板)

Link

注意:本题要求一个方向需要走到底算一步。

class Solution {
  vector<int> dx = {0, -1, 0, 1}, dy = {1, 0, -1, 0};
public:
  bool hasPath(vector<vector<int>>& maze, vector<int>& start, vector<int>& destination) {
    int n = maze.size(), m = maze[0].size();
    vector<vector<bool>> visited(n, vector<bool>(m));
    queue<pair<int, int>> q;
    q.push({start[0], start[1]});
    while (!q.empty()) {
      pair<int, int> cur = q.front();
      q.pop();
      if (cur.first == destination[0] && cur.second == destination[1]) return true;
      for (int i = 0; i < 4; i ++ ) {
        int x = cur.first, y = cur.second;
        while (x + dx[i] >= 0 && x + dx[i] < n && y + dy[i] >= 0 && y + dy[i] < m &&
               maze[x + dx[i]][y + dy[i]] == 0) {
          x += dx[i]; y += dy[i];
        }
        if (make_pair(x, y) != cur) {
          if (visited[x][y]) continue;
          q.push({x, y});
          visited[x][y] = true;
        }
      } 
    }
    return false;
  }
};

505. The Maze II(Dijkstra模板)

Link
Dijkstra用于计算无负权边的单源最短路。

相比于BFS模板,Dijkstra使用priority_queue使队列中的点按照与起点的距离排序。并使用solved标记已经确定最短距离的节点,而不是BFS中用visited标记已经访问过的节点。没有被solved的节点的distance可能被当前节点更新,所以更新distance后加入优先队列pq(优先队列会自动将distance较小的放在前面)。

另外,由于节点可能被重复加入优先队列,所以当我们从pq中取出节点时,如果它已经被solved,就跳过。

struct Node {
  int x, y, distance;
  Node(int x, int y, int distance) : x(x), y(y), distance(distance) {}
  bool operator<(const Node& a) const {return distance > a.distance; }
};

class Solution {
  vector<int> dx = {0, -1, 0, 1}, dy = {1, 0, -1, 0};
 public:
  int shortestDistance(vector<vector<int>>& maze, vector<int>& start, vector<int>& destination) {
    int n = maze.size(), m = maze[0].size();
    vector<vector<bool>> solved(n, vector<bool>(m, false));
    priority_queue<Node> pq;
    pq.push(Node(start[0], start[1], 0));
    while (!pq.empty()) {
      Node node = pq.top();
      pq.pop();
      if (node.x == destination[0] && node.y == destination[1]) return node.distance;
      // There might be multiple nodes with the same {x, y} but different {distance} in pq.
      // Skip ones which are already solved.
      if (solved[node.x][node.y]) continue;
      solved[node.x][node.y] = true;
      for (int i = 0; i < 4; ++i) {
        int numSteps = 0;
        int x = node.x, y = node.y;
        while (x + dx[i] >= 0 && x + dx[i] < n && y + dy[i] >= 0 && y + dy[i] < m &&
               maze[x + dx[i]][y + dy[i]] == 0) {
          x += dx[i]; y += dy[i];
          numSteps++;
        }
        if (solved[x][y]) continue;
        pq.push(Node(x, y, node.distance + numSteps));
      }
    }
    return -1;
  }
};
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值